Applied Physics B

, 122:136 | Cite as

Polarization dependence of plasmonic near-field enhanced photoemission from cross antennas

  • P. Klaer
  • G. Razinskas
  • M. Lehr
  • X. Wu
  • B. Hecht
  • F. Schertz
  • H.-J. Butt
  • G. Schönhense
  • H. J. Elmers
Article
Part of the following topical collections:
  1. Ultrafast Nanooptics

Abstract

The field enhancement of individual cross-shaped nanoantennas for normal incident light has been measured by the relative photoemission yield using a photoemission electron microscope. We not only measured the electron yield in dependence on the intensity of infrared light (800 nm, 100 fs), but also the polarization dependence. In the normal incidence geometry, the electrical field vector of the illuminating light lies in the surface plane of the sample, independent of the polarization state. Strong yield variations due to an out-of-plane field component as well as changes in the polarization state described by the Fresnel laws are avoided. The electron yield is related to the near-field enhancement as a function of the polarization state of the incident light. The polarization dependence is well explained by numerical simulations.

References

  1. 1.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995)CrossRefGoogle Scholar
  2. 2.
    D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G. Kino, W.E. Moerner, Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible. Nano Lett. 4, 957 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    L. Novotny, B. Hecht, Principles of Nano-optics (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  4. 4.
    E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 5644 (2003)CrossRefGoogle Scholar
  5. 5.
    P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Plasmon hybridizaton in nanoparticle dimers. Nano Lett. 4, 899 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    P. Nordlander, F. Le, Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. Appl. Phys. B 84, 35 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    T. Okamoto, I. Yamaguchi, Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique. J. Phys. Chem. B 107, 10321 (2003)CrossRefGoogle Scholar
  8. 8.
    Y. Uchiho, K. Kajikawa, Evaluation of gap distance between gold nanospheres and a gold substrate by absorption spectroscopy. Chem. Phys. Lett. 478, 211 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S.F. Heucke, F. Baumann, G.P. Acuna, P.M.D. Severin, S.W. Stahl, M. Strackharn, I.H. Stein, P. Altpeter, P. Tinnefeld, H.E. Gaub, Placing individual molecules in the center of nanoapertures. Nano Lett. 14(2), 391–395 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    C.D. Stanciu, F. Hansteen, A.V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, T. Rasing, All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    P. Klaer, F. Schertz, G. Schönhense, H.J. Elmers, Spin-polarized photoelectrons resonantly excited by circularly polarized light from a fractional Ag film on GaAs(100). Phys. Rev. B 88, 214425 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    P. Biagioni, J.S. Huang, L. Duò, M. Finazzi, B. Hecht, Cross resonant optical antenna. Phys. Rev. Lett. 102, 256801 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    R. Mohammadi, A. Unger, H.J. Elmers, G. Schönhense, M.Z. Shushtari, M. Kreiter, Manipulating near field polarization beyond the diffraction limit. Appl. Phys. B 104, 65 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    M.I. Stockman, Nanoscience dark-hot resonances. Nature 467, 541 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H.-J. Elmers, G. Schönhense, Near field of strongly coupled plasmons: uncovering dark modes. Nano Lett. 12, 1885 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    P. Klaer, G. Razinskas, M. Lehr, K. Krewer, F. Schertz, W. Xiao-Fei, B. Hecht, G. Schönhense, H.J. Elmers, Photoemission electron microscopy and finite-element simulation of plasmonic angular momentum confinement in cross resonant optical antennas. Appl. Phys. Lett. 106, 261101 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    M. Bauer, A. Marienfeld, M. Aeschlimann, Prog. Surf. Sci. 90, 319 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    N.E. Karatzas, A.T. Georges, Opt. Commun. 81, 479 (2006)Google Scholar
  21. 21.
    M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, D. Voronine, Science 333, 1723 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, R. Hillenbrand, Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. Nano Lett. 10, 3524 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • P. Klaer
    • 1
  • G. Razinskas
    • 2
  • M. Lehr
    • 1
  • X. Wu
    • 2
  • B. Hecht
    • 2
  • F. Schertz
    • 1
  • H.-J. Butt
    • 3
  • G. Schönhense
    • 1
  • H. J. Elmers
    • 1
  1. 1.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Institut für PhysikJulius-Maximilians-UniversitätWürzburgGermany
  3. 3.Max-Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations