Advertisement

Applied Physics B

, 122:131 | Cite as

Comparison of Gaussian and super Gaussian laser beams for addressing atomic qubits

  • Katharina Gillen-Christandl
  • Glen D. Gillen
  • M. J. Piotrowicz
  • M. SaffmanEmail author
Article

Abstract

We study the fidelity of single-qubit quantum gates performed with two-frequency laser fields that have a Gaussian or super Gaussian spatial mode. Numerical simulations are used to account for imperfections arising from atomic motion in an optical trap, spatially varying Stark shifts of the trapping and control beams, and transverse and axial misalignment of the control beams. Numerical results that account for the three-dimensional distribution of control light show that a super Gaussian mode with intensity \(I\sim \hbox {e}^{-2(r/w_0)^n}\) provides reduced sensitivity to atomic motion and beam misalignment. Choosing a super Gaussian with \(n=6\) the decay time of finite temperature Rabi oscillations can be increased by a factor of 60 compared to an \(n=2\) Gaussian beam, while reducing crosstalk to neighboring qubit sites.

Notes

Acknowledgments

MS and MJP were supported by the IARPA MQCO program through ARO Contract W911NF-10-1-0347.

References

  1. 1.
    T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464, 45 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    D. Schrader, I. Dotsenko, M. Khudaverdyan, Y. Miroshnychenko, A. Rauschenbeutel, D. Meschede, Phys. Rev. Lett. 93, 150501 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    T. Xia, M. Lichtman, K. Maller, A.W. Carr, M.J. Piotrowicz, L. Isenhower, M. Saffman, Phys. Rev. Lett. 114, 100503 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Wang, X. Zhang, T.A. Corcovilos, A. Kumar, D.S. Weiss, Phys. Rev. Lett. 115, 043003 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    J. Lee, E. Montano, I. Deutsch, P. Jessen, Nat. Commun. 4, 2027 (2013)ADSGoogle Scholar
  6. 6.
    H. Labuhn, S. Ravets, D. Barredo, L. Béguin, F. Nogrette, T. Lahaye, A. Browaeys, Phys. Rev. A 90, 023415 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    D.D. Yavuz, P.B. Kulatunga, E. Urban, T.A. Johnson, N. Proite, T. Henage, T.G. Walker, M. Saffman, Phys. Rev. Lett. 96, 063001 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    C. Knoernschild, X.L. Zhang, L. Isenhower, A.T. Gill, F.P. Lu, M. Saffman, J. Kim, Appl. Phys. Lett. 97, 134101 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    M. Reetz-Lamour, T. Amthor, J. Deiglmayr, M. Weidemüller, Phys. Rev. Lett. 100, 253001 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, T. Pfau, Phys. Rev. Lett. 107, 243001 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    M. Saffman, Opt. Lett. 29, 1016 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    G.D. Gillen, K. Gillen, S. Guha, Light Propagation in Linear Optical Media (CRC Press, Boca Raton, 2013)Google Scholar
  13. 13.
    B. Lü, B. Zhang, X. Wang, Opt. Commun. 126, 1 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    G.D. Gillen, S. Guha, Am. J. Phys. 72, 1195 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    M.J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, M. Saffman, Phys. Rev. A 88, 013420 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    S. Zhang, F. Robicheaux, M. Saffman, Phys. Rev. A 84, 043408 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    F. Le Kien, P. Schneeweiss, A. Rauschenbeutel, Eur. Phys. J. D 67, 1 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    J.E. Sansonetti, J. Phys. Chem. Ref. Data 38, 761 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    E. Iskrenova-Tchoukova, M.S. Safronova, U.I. Safronova, J. Comp. Methods Sci. Eng. 7, 521 (2007)MathSciNetGoogle Scholar
  20. 20.
    S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, A. Rauschenbeutel, D. Meschede, Phys. Rev. A 72, 023406 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    D. Schrader, S. Kuhr, W. Alt, M. Müller, V. Gomer, D. Meschede, Appl. Phys. B 73, 819 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Adv. Opt. At. Mol. Phys. 42, 95 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    K. Maller, M.T. Lichtman, T. Xia, Y. Sun, M.J. Piotrowicz, A.W. Carr, L. Isenhower, M. Saffman, Phys. Rev. A 92, 022336 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    A.J. Wheeler, A.R. Ganji, Introduction to Engineering Experimentation (Prentice Hall, Englewood Cliffs, 1996)Google Scholar
  25. 25.
    E. Mount, C. Kabytayev, S. Crain, R. Harper, S.Y. Baek, G. Vrijsen, S.T. Flammia, K.R. Brown, P. Maunz, J. Kim, Phys. Rev. A 92, 060301(R) (2015)ADSCrossRefGoogle Scholar
  26. 26.
    J.A. Hoffnagle, C.M. Jefferson, Appl. Opt. 39, 5488 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    C.Y. Han, Y. Ishii, K. Murata, Appl. Opt. 22, 3644 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    M. Reetz-Lamour, J. Deiglmayr, T. Amthor, M. Weidemüller, New J. Phys. 10, 045026 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    M. Pasienski, B. DeMarco, Opt. Express 16, 2176 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, A. Browaeys, Phys. Rev. X 4, 021034 (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Katharina Gillen-Christandl
    • 1
  • Glen D. Gillen
    • 1
  • M. J. Piotrowicz
    • 2
    • 3
  • M. Saffman
    • 2
    Email author
  1. 1.Physics DepartmentCalifornia Polytechnic State UniversitySan Luis ObispoUSA
  2. 2.Department of PhysicsUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of PhysicsUniversity of MichiganAnn ArborUSA

Personalised recommendations