Applied Physics B

, 122:104 | Cite as

Optimal control for Rydberg quantum technology building blocks

  • Matthias M. Müller
  • Thomas Pichler
  • Simone Montangero
  • Tommaso Calarco
Part of the following topical collections:
  1. Quantum Repeaters: From Components to Strategies


We consider a platform for quantum technology based on Rydberg atoms in optical lattices where each atom encodes one qubit of information and external lasers can manipulate their state. We demonstrate how optimal control theory enables the functioning of two specific building blocks on this platform: We engineer an optimal protocol to perform a two-qubit phase gate and to transfer the information within the lattice among specific sites. These two elementary operations allow to design very general operations like storage of atoms and entanglement purification as, for example, needed for quantum repeaters.


Optical Lattice Rabi Frequency Rydberg State Rydberg Atom CNOT Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge support from SFB/TRR21,, the EU project RYSQ, and we thank the bwUniCluster [52] for the computational resources.


  1. 1.
    H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Nature 414, 413 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    B. Zhao, M. Müller, K. Hammerer, P. Zoller, Phys. Rev. A 81, 052329 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Han, B. He, K. Heshami, C.-Z. Li, C. Simon, Phys. Rev. A 81, 052311 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    E. Brion, F. Carlier, V.M. Akulin, K. Mølmer, Phys. Rev. A 85, 042324 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    H. Wu, Z.-B. Yang, L.-T. Shen, S.-B. Zheng, J. Phys. B At. Mol. Opt. Phys. 46, 185502 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    L. Li, Y.O. Dudin, A. Kuzmich, Nature 498, 466 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    M. Müller, I. Lesanovsky, H. Weimer, H.P. Büchler, P. Zoller, Phys. Rev. Lett. 102, 170502 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Saffman, T.G. Walker, Phys. Rev. A 66, 065403 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Y.O. Dudin, A. Kuzmich, Science 336, 887 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, T. Pfau, Phys. Rev. Lett. 99, 163601 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    M. Saffman, T.G. Walker, K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    L.H. Pedersen, K. Mølmer, Phys. Rev. A 79, 012320 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    M.M. Müller, A. Kölle, R. Löw, T. Pfau, T. Calarco, S. Montangero, Phys. Rev. A 87, 053412 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Miroshnychenko, U.V. Poulsen, K. Mølmer, Phys. Rev. A 87, 023821 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M.M. Müller, H.R. Haakh, T. Calarco, C.P. Koch, C. Henkel, Quant. Inf. Proc. 10, 771–792 (2011)CrossRefGoogle Scholar
  17. 17.
    M.M. Müller, M. Murphy, S. Montangero, T. Calarco, P. Grangier, A. Browaeys, Phys. Rev. A 89, 032334 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    F. Caruso, V. Giovannetti, C. Lupo, S. Mancini, Rev. Mod. Phys. 86, 1203 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, I. Bloch, Nature 491, 87–91 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    P. Schauß, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau, T. Macrì, T. Pohl, I. Bloch, C. Gross, Science 347, 6229 (2015)CrossRefGoogle Scholar
  21. 21.
    Yao Weimer, C.R. Laumann, M.D. Lukin, Phys. Rev. Lett. 108, 100501 (2012)Google Scholar
  22. 22.
    C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Côté, M.D. Lukin, Phys. Rev. Lett. 85, 2208 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Vitaeu, D. Comparat, P. Pillet, A. Browaeys, P. Grangier, Nat. Phys. 5, 115 (2009)CrossRefGoogle Scholar
  25. 25.
    L. Isenhower, E. Urban, X.L. Zhang, A.T. Gill, T. Henage, T.A. Johnson, T.G. Walker, M. Saffman, Phys. Rev. Lett. 104, 010503 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, A. Browaeys, Phys. Rev. A 82, 013405 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, A. Browaeys, Phys. Rev. Lett. 104, 010502 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    X.L. Zhang, A.T. Gill, L. Isenhower, T.G. Walker, M. Saffman, Phys. Rev. A 85, 042310 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    M. Saffman, T.G. Walker, Phys. Rev. A 72, 042302 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    L. Isenhower, M. Saffman, K. Mülmer, Quant. Inf. Proc. 10, 755 (2011)CrossRefGoogle Scholar
  31. 31.
    H.-Z. Wu, Z.-B. Yang, S.-B. Zheng, Phys. Rev. A 82, 034307 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    D.D.B. Rao, K. Mülmer, Phys. Rev. A 89, 030301 (2014). (R)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Liang, Q.-C. Wu, S.-L. Su, X. Ji, S. Zhang, Phys. Rev. A 91, 032304 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    J. Zhang, J. Vala, S. Sastry, K.B. Whaley, Phys. Rev. Lett. 91, 027903 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    T. Calarco, J.I. Cirac, P. Zoller, Phys. Rev. A 63, 062304 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    J. Reichel, V. Vuletić (eds.), Atom Chips (Wiley-VCH, Germany, 2011)Google Scholar
  37. 37.
    I. Bloch, Nature 453, 1016–1022 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    R. Löw, H. Weimer, J. Nipper, J.B. Balewski, B. Butscher, H.P. Büchler, T. Pfau, J. Phys. B. At. Mol. Opt. Phys. 45, 113001 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    E. Brion, L.H. Pedersen, K. M(ø)lmer, J. Phys. A 40, 1033 (2007)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)CrossRefGoogle Scholar
  41. 41.
    A.I. Konnov and V.F. Krotov. Automation and Remote Control, Vol. 60, No. 10 (1999)Google Scholar
  42. 42.
    S. Sklarz, D. Tannor, Phys. Rev. A 66, 053619 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    J.P. Palao, R. Kosloff, Phys. Rev. A 68, 062308 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    S. White, Phys. Rev. Lett. 69, 2863 (1992)ADSCrossRefGoogle Scholar
  45. 45.
    U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    P. Doria, T. Calarco, S. Montangero, Phys. Rev. Lett. 106, 190501 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    T. Caneva, T. Calarco, S. Montangero, Phys. Rev. A 84, 022326 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    N. Rach, M.M.Müller, T. Calarco, and S. Montangero, arXiv:1506.04601 (2015)
  49. 49.
    S. Lloyd, S. Montangero, Phys. Rev. Lett. 113, 010502 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, G.E. Santoro, Phys. Rev. Lett. 103, 240501 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    D. A. Steck, “Rubidium 87 D Line Data,” available online at (revision 2.1.4, 23 December 2010)
  52. 52.
    This work was performed on the computational resource bwUniCluster funded by the Ministry of Science, Research and Arts and the Universities of the State of Baden-Württemberg, Germany, within the framework program bwHPCGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Matthias M. Müller
    • 1
    • 2
  • Thomas Pichler
    • 2
  • Simone Montangero
    • 2
  • Tommaso Calarco
    • 2
  1. 1.LENS and Dipartimento di Fisica e AstronomiaUniversità di FirenzeSesto FiorentinoItaly
  2. 2.Institute for Complex Quantum Systems and Center for Integrated Quantum Science and TechnologyUniversität UlmUlmGermany

Personalised recommendations