Applied Physics B

, 122:99 | Cite as

Microlens array fabrication on fused silica influenced by NIR laser

  • G. K. Kostyuk
  • R. A. Zakoldaev
  • M. M. Sergeev
  • E. B. Yakovlev
Article

Abstract

In this paper, we present the method of microlens arrays formation on the fused silica surfaces by the irradiation of ytterbium fiber laser (λ = 1.064 μm, τ ~ 100 ns, ν 10–100 kHz). MLAs formation time, depending on its size and the number of microlenses, ranged between 5 and 15 min. Microlenses with diameters of 150–400 μm were successfully formed. The MLAs focal length was experimentally measured. Thus, the achieved numerical aperture was in the range of 0.0025–0.0057. The simultaneous processing of titanium films was made by a single-mode ytterbium laser in the scheme of non-imaging integrator using the formed MLA. The result of titanium film processing is presented in the article.

References

  1. 1.
    J. Leggatt, M. Hutley, Electron. Lett. 27, 238 (1991)CrossRefGoogle Scholar
  2. 2.
    F. McCormick et al., Opt. Quantum Electron. 24, S465 (1992)CrossRefGoogle Scholar
  3. 3.
    D.A. Miller, Proc. IEEE 97, 1166 (2009)CrossRefGoogle Scholar
  4. 4.
    J.H. Karp et al., Opt. Express 19, A673 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    A. Werber, H. Zappe, Appl. Opt. 44, 3238 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    D. Wu et al., Appl. Phys. Lett. 97, 031109 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    H.-T. Hsieh et al., Opt. Commun. 284, 5225 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    H.J. Tiziani et al., Appl. Opt. 35, 120 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    M.M. Vekshin et al., Meas. Sci. Technol. 21, 054010 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    S. Matsuo et al., Appl. Phys. A 80, 683 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    D. Nieto et al., J. Micro/Nanolithogr. MEMS MOEMS 11, 023014 (2012)CrossRefGoogle Scholar
  12. 12.
    F.M. Dickey, S.C. Holswade, Laser Beam Shaping Theory and Technologies (Marcel Dekker, Basel, Switzerland, 2000)Google Scholar
  13. 13.
    A. Forbes, et al.: Proc. SPIE 8130, Laser Beam Shaping XII, 8130, 81300N (2011)Google Scholar
  14. 14.
    A. Forbes et al., Proc. SPIE Laser Beam Shap. XIV 8843, 88430H (2013)CrossRefGoogle Scholar
  15. 15.
    A. Forbes et al., SPIE 8130. Laser Beam Shap. XII 8130, 81300O (2011)CrossRefGoogle Scholar
  16. 16.
    E. Roy et al., Microelectron. Eng. 86, 2255 (2009)CrossRefGoogle Scholar
  17. 17.
    G. Kopitkovas et al., Appl. Surf. Sci. 254, 1073 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    M.C. Chou et al., Sens. Actuators A 118, 298 (2005)CrossRefGoogle Scholar
  19. 19.
    N. Ong et al., Microelectron. Eng. 60, 365 (2002)CrossRefGoogle Scholar
  20. 20.
    D. MacFarlane et al., IEEE Photon. Technol. Lett. 6, 1112 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    Z.D. Popovic et al., Appl. Opt. 27, 1281 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    C.-C. Chiu, Y.-C. Lee, Opt. Express 20, 5922 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    K. Naessens et al., Appl. Surf. Sci. 208–209, 159 (2003)CrossRefGoogle Scholar
  24. 24.
    T. Meunier et al., Opt. Lett. 37, 4266 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    H. Ottevaere et al., J. Opt. A Pure Appl. Opt. 8, S407 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    H. Zappe, Adv. Opt. Technol. 1, (2012)Google Scholar
  27. 27.
    N.P. Bansal, R.H. Doremus, Handbook of Glass Properties. (Elsevier, Troy, New York, 2013)Google Scholar
  28. 28.
    T. Chen et al., Opt. Express 17, 9733 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    N.F. Borrelli, Microoptics Technology: Fabrication and Applications of Lens Arrays and Devices (CRC Press, New York, 2004)Google Scholar
  30. 30.
    M. Wakaki et al., Appl. Opt. 37, 627 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    V.P. Veiko, Y.B. Yakovlev, Opt. Eng. 33, 3567 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    F. Chen et al., Opt. Express 18, 20334 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    J. Wang et al., Appl. Phys. A 69, S271 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    X. Ding et al., Appl. Phys. A 75, 437 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    J. Wang et al., Appl. Phys. A Mater. Sci. Process. 68, 111 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    T. Smausz et al., Appl. Surf. Sci. 254, 1091 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    H. Chao et al., J. Laser Appl. 24, 012001 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    H. Niino et al., J. Photochem. Photobiol. A 158, 179 (2003)CrossRefGoogle Scholar
  39. 39.
    H. Niino et al., Appl. Phys. A 79, 827 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Kawaguchi et al., J. Photochem. Photobiol. A 182, 319 (2006)CrossRefGoogle Scholar
  41. 41.
    H. Niino et al., J. Laser Micro/Nanoeng. 1, 39 (2006)CrossRefGoogle Scholar
  42. 42.
    G. Kopitkovas et al., Microelectron. Eng. 67–68, 438 (2003)CrossRefGoogle Scholar
  43. 43.
    G. Kopitkovas et al., J. Photochem. Photobiol. A 166, 135 (2004)CrossRefGoogle Scholar
  44. 44.
    G. Kopitkovas et al., J. Laser Micro/Nanoeng. 1, 23 (2006)CrossRefGoogle Scholar
  45. 45.
    K. Zimmer, R. Böhme, Opt. Lasers Eng. 43, 1349 (2005)CrossRefGoogle Scholar
  46. 46.
    R. Böhme, K. Zimmer, Appl. Surf. Sci. 253, 8091 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    J.-Y. Cheng et al., J. Micromech. Microeng. 15, 1147 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    J.-Y. Cheng et al., J. Micromech. Microeng. 17, 2316 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    J.-Y. Cheng et al., J. Micromech. Microeng. 21, 075019 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    T. Sato et al., J. Laser Micro Nanoeng. 7, 81 (2012)CrossRefGoogle Scholar
  51. 51.
    C. Vass et al., JLMN J. Laser Micro/Nanoeng. 5, 43 (2010)CrossRefGoogle Scholar
  52. 52.
    K. Zimmer et al., Appl. Surf. Sci. 302, 42 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    B. Hopp et al., JLMN J. Laser Micro/Nanoeng. 5, 80 (2010)CrossRefGoogle Scholar
  54. 54.
    B. Hopp et al., J. Phys. D Appl. Phys. 39, 4843 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    H. Chao et al., J. Laser Appl. 24, 022005 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    Z. Huang et al., Appl. Phys. A 93, 159 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    K. Zimmer et al., Appl. Phys. A 74, 453 (2002)ADSCrossRefGoogle Scholar
  58. 58.
    Y. Hanada et al., Appl. Phys. A 79, 1001 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    M. Hong, et al., Laser-induced-plasma-assisted ablation for glass microfabrication, in International Symposium on Photonics and Applications, International Society for Optics and Photonics, p. 138, 2001Google Scholar
  60. 60.
    M. Hong et al., Appl. Surf. Sci. 186, 556 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    R. Zakoldaev et al., J. Laser Micro/Nanoeng. 10, 15 (2015)CrossRefGoogle Scholar
  62. 62.
    G.K. Kostyuk et al., Opt. Lasers Eng. 68, 16 (2015)CrossRefGoogle Scholar
  63. 63.
    M.M. Sergeev et al., Prot. Metals Phys. Chem. Surf. 3, 427 (2015)CrossRefGoogle Scholar
  64. 64.
    A.B. Djurišić, E.H. Li, J. Appl. Phys. 85, 7404 (1999)ADSCrossRefGoogle Scholar
  65. 65.
    J. Klett et al., Carbon 38, 953 (2000)CrossRefGoogle Scholar
  66. 66.
    S.M. Metev, V.P. Veiko, Laser-Assisted Microtechnology (Springer, New York, 1998)CrossRefGoogle Scholar
  67. 67.
    Z. Guo, L. Ran, Y. Han, S. Qu, Holographic fabrication of periodic microstructures by interfered femtosecond laser pulses (INTECH Open Access Publisher 2012)Google Scholar
  68. 68.
    K.L. Wlodarczyk et al., Appl. Opt. 49, 1997 (2010)ADSCrossRefGoogle Scholar
  69. 69.
    M. Malinauskas et al., J. Opt. 12, 035204 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations