Applied Physics B

, 122:100 | Cite as

Detection of methyl mercaptan with a 3393-nm distributed feedback interband cascade laser

  • Zhenhui Du
  • Weimeng Zhen
  • Zheyuan Zhang
  • Jinyi Li
  • Nan Gao
Article

Abstract

Attention has been focused recently on the harmful effects and malodor of methyl mercaptan (CH3SH), so it is desired to detect CH3SH in situ, sensitively, and selectively. We detected methyl mercaptan via tunable laser absorption spectroscopy (TLAS) with a room-temperature distributed feedback interband cascade laser emitting around 3393 nm and a hollow waveguide gas cell with 5 m length. The fundamental characteristic fingerprint absorptions of CH3SH from 3260 to 3400 nm were examined, and the spectral line 3393.584 nm (corresponding to the ν2 C–H symmetric stretch) was determined to be the optimum for CH3SH detection. The response characteristics of the TLAS system were established by implementing a set of CH3SH concentration gradient experiments with wavelength-scanned direct absorption spectroscopy. The results show that CH3SH TLAS spectra are in excellent agreement with spectra from the Pacific Northwest National Laboratory database; the TLAS response linearity is 0.987, and the detection limit is as low as 25 ppbv (parts per billion by volume, 10−9) with integrated time 1.84 s, corresponding to an absorbance of 1.34 × 10−4 (near the theoretical detection limit). Overall, the TLAS system is a robust method for CH3SH monitoring of industrial waste gas emissions.

References

  1. 1.
    B.P. Lomans, C. van der Drift, A. Pol, H.J.M. Op den Camp, Cell. Mol. Life Sci. 59, 575 (2002)CrossRefGoogle Scholar
  2. 2.
    R. Pal, K.-H. Kim, E.-C. Jeon, S.-K. Song, Z.-H. Shon, S.-Y. Park, K.-H. Lee, S.-J. Hwang, J.-M. Oh, Y.-S. Koo, Environ. Monit. Access. 148, 109 (2009)CrossRefGoogle Scholar
  3. 3.
    K.-H. Kim, Atmos. Environ. 40, 6567 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    J. Lin, J. Aoll, Y. Niclass, M.I. Velasco, L. Wünsche, J. Pika, C. Starkenmann, Environ. Sci. Technol. 47, 7876 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    A. Feilberg, D. Liu, A.P.S. Adamsen, M.J. Hansen, K.E.N. Jonassen, Environ. Sci. Technol. 44, 5894 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    J.E. Amoore, E. Hautala, J. Appl. Toxicol. 3, 272 (1983)CrossRefGoogle Scholar
  7. 7.
    S. Jayaraman, R. Walia, N. Alagirisamy, Sensor. Actuat. B 148, 54 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Vance, L.E. Christensen, C.R. Webster, K. Sung, Planet. Space Sci. 59, 299 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    K. Toda, H. Kuwahara, H. Kajiwara, K. Hirota, S.-I. Ohira, Anal. Chim. Acta 841, 1 (2014)CrossRefGoogle Scholar
  10. 10.
    D.J. Paetznick, G.A. Reineccius, T.L. Peppard, J.M. Herkert, P. Lenton, J. Breath Res. 4, 017106 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    L.J.J. Catalan, V. Liang, C.Q. Jia, J. Chromatogr. A 1136, 89 (2006)CrossRefGoogle Scholar
  12. 12.
    A. Tangerman, E.G. Winkel, J. Breath Res. 2, 017010 (2008)CrossRefGoogle Scholar
  13. 13.
    N. Tanda, J. Washio, K. Ikawa, K. Suzuki, T. Koseki, M. Iwakurac, J. Dent. 35, 552 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Mori, Y. Itagaki, Y. Sadaoka, S.-I. Nakagawa, M. Kida, T. Kojima, Sensor. Actuat. B 191, 351 (2014)CrossRefGoogle Scholar
  15. 15.
    A. Yamaguchi, K. Masunaga, K. Hayashi, K. Toko, IEEJ Trans. Electr. Electr. 4, 372 (2009)CrossRefGoogle Scholar
  16. 16.
    Z.H. Li, S.G. Sun, J.L. Marty, Sensor Actuat. B Chem. 192, 680 (2014)CrossRefGoogle Scholar
  17. 17.
    K. Mitsubayashi, T. Minamide, K. Otsuka, H. Kudo, H. Saito, Anal. Chim. Acta 573, 75 (2006)CrossRefGoogle Scholar
  18. 18.
    T. Minamide, K. Mitsubayashi, H. Saito, Sensor. Actuat. B 108, 639 (2005)CrossRefGoogle Scholar
  19. 19.
    Y. Tanaka, T. Nakamoto, T. Moriizumi, Sensor. Actuat. B 119, 84 (2006)CrossRefGoogle Scholar
  20. 20.
    M.W. Sigrist, R. Bartlome, D. Marinov, J.M. Rey, D.E. Vogler, H. Wachter, Appl. Phys. B 90, 289 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, L. Nähle, M. Fischer, J. Koeth, Appl. Phys. B 108, 183 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, S. Lundqvis, Appl. Phys. B 105, 427 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    P. Kluczynski, S. Lundqvist, S. Belahsene, Y. Rouillard, Opt. Lett. 34, 3767 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    S. Lundqvist, P. Kluczynski, R. Weih, M.V. Edlinger, L. Nähle, M. Fischer, A. Bauer, S. Höfling, J. Koeth, Appl. Opt. 51, 6009 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    M. Horstjan, Y.A. Bakhirk, A.A. Kostere, R.F. Curl, F.K. Tittel, C.M. Wong, C.J. Hill, R.Q. Yang, Appl. Phys. B 79, 799 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, F.K. Tittel, Appl. Phys. B 106, 251 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    S.W. Sharpe, T.J. Johnson, R.L. Sams, P.M. Chu, G.C. Rhoderick, P.A. Johnson, Appl. Spectrosc. 58, 1452 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    L.S. Rothman, I.E. Gordon et al., J. Quant. Spectrosc. RA. 130, 4 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 14, 1459 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    C.S. Goldenstein, C.L. Strand, I.A. Schultz, Appl. Opt. 53, 356 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    G.J. Fetzer, A.S. Pittner, W.L. Ryder, D.A. Brown, Appl. Opt. 41, 3613 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    P. Werle, R. Miicke, F. Slemr, Appl. Phys. B 57, 131 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Precision Measuring Technology and InstrumentsTianjin UniversityTianjinChina
  2. 2.School of Electrical Engineering and AutomationTianjin Polytechnic UniversityTianjinChina
  3. 3.School of Mechanical EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations