Skip to main content

Integrated superconducting detectors on semiconductors for quantum optics applications

Abstract

Semiconductor quantum photonic circuits can be used to efficiently generate, manipulate, route and exploit nonclassical states of light for distributed photon-based quantum information technologies. In this article, we review our recent achievements on the growth, nanofabrication and integration of high-quality, superconducting niobium nitride thin films on optically active, semiconducting GaAs substrates and their patterning to realize highly efficient and ultra-fast superconducting detectors on semiconductor nanomaterials containing quantum dots. Our state-of-the-art detectors reach external detection quantum efficiencies up to 20 % for ~4 nm thin films and single-photon timing resolutions <72 ps. We discuss the integration of such detectors into quantum dot-loaded, semiconductor ridge waveguides, resulting in the on-chip, time-resolved detection of quantum dot luminescence. Furthermore, a prototype quantum optical circuit is demonstrated that enabled the on-chip generation of resonance fluorescence from an individual InGaAs quantum dot, with a linewidth <15 μeV displaced by 1 mm from the superconducting detector on the very same semiconductor chip. Thus, all key components required for prototype quantum photonic circuits with sources, optical components and detectors on the same chip are reported.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    J.L. O’Brien, A. Furusawa, J. Vuckovic, Photonic quantum technologies. Nat. Photonics 3, 687 (2009)

    ADS  Article  Google Scholar 

  2. 2.

    A.J. Shields, Semiconductor quantum light sources. Nat. Photonics 1, 215 (2007)

    ADS  Article  Google Scholar 

  3. 3.

    A. Laucht, S. Pütz, T. Günther, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A.W. Holleitner, M. Kaniber, J.J. Finley, A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 011014 (2012)

    Google Scholar 

  4. 4.

    A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, V. Vuckovic, Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859 (2008)

    Article  Google Scholar 

  5. 5.

    A. Politi, J. Matthews, M.G. Thompson, J.L. O’Brien, Integrated quantum photonics. IEEE J. Quantum Electron. 15, 1673 (2009)

    Article  Google Scholar 

  6. 6.

    J.C.F. Matthews, A. Politi, A. Stefanov, J.L. O’Brien, Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346 (2009)

    ADS  Article  Google Scholar 

  7. 7.

    P. Lodahl, S. Mahmoodian, S. Stobbe, Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    A. Schwagmann, S. Kalliakos, I. Farrer, J.P. Griffiths, G.A.C. Jones, D.A. Ritchie, A.J. Shields, On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide. Appl. Phys. Lett. 99, 261108 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    T.B. Hoang, J. Beetz, L. Midolo, M. Skacel, M. Lermer, M. Kamp, S. Höfling, L. Balet, N. Chauvin, A. Fiore, Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides. Appl. Phys. Lett. 100, 061122 (2012)

    ADS  Article  Google Scholar 

  10. 10.

    W.H.P. Pernice, C. Schuck, O. Minaeva, M. Li, G.N. Goltsman, A.V. Sergienko, H.X. Than, High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705 (2001)

    ADS  Article  Google Scholar 

  12. 12.

    F. Najafi, F. Marsili, E. Dauler, R.J. Molnar, K.K. Berggren, Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors. Appl. Phys. Lett. 100(152), 602 (2012)

    Google Scholar 

  13. 13.

    G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vuckovic, R. Gross, J.J. Finley, On-chip generation, routing, and detection of resonance fluorescence. Nano Lett. 15, 5208 (2015)

    ADS  Article  Google Scholar 

  14. 14.

    E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    ADS  Article  MATH  Google Scholar 

  15. 15.

    D.E. Chang, A.S. Sorensen, E.A. Demler, M.D. Lukin, A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807 (2007)

    Article  Google Scholar 

  16. 16.

    J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, G.S. Götzinger, V. Sandoghdar, A single-molecule optical transistor. Nature 460, 76 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    D. Tiarks, S. Baur, K. Schneider, S. Dürr, G. Rempe, Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014)

    ADS  Article  Google Scholar 

  18. 18.

    H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, S. Hofferberth, Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014)

    ADS  Article  Google Scholar 

  19. 19.

    Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmeyer, J.-W. Pan, Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098 (2008)

    ADS  Article  Google Scholar 

  20. 20.

    H.-J. Briegel, W. Dürr, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    ADS  Article  Google Scholar 

  21. 21.

    G. Reithmaier, J. Senf, S. Lichtmannecker, T. Reichert, F. Flassig, A. Voss, R. Gross, J.J. Finley, Optimisation of NbN thin films on GaAs substrates for in situ single photon detection in structured photonic devices. J. Appl. Phys. 113, 143507 (2013)

    ADS  Article  Google Scholar 

  22. 22.

    G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, J.J. Finley, On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors. Sci. Rep. 3, 1901 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    G. Reithmaier, F. Flassig, P. Hasch, S. Lichtmannecker, K. Müller, J. Vuckovic, R. Gross, M. Kaniber, J.J. Finley, A carrier relaxation bottleneck probed in single InGaAs quantum dots using integrated superconducting single photon detectors. Appl. Phys. Lett. 105, 081107 (2014)

    ADS  Article  Google Scholar 

  24. 24.

    F. Flassig, M. Kaniber, G. Reithmaier, K. Müller, A. Andrejew, R. Gross, J. Vuckovic, J.J. Finley, Towards on-chip generation, routing and detection of non-classical light. Proc. SPIE 9373, 937305 (2015)

    Article  Google Scholar 

  25. 25.

    J. Villegirr, N. Hadacek, S. Monso, B. Delnet, A. Roussy, P. Febvre, G. Lamura, J. Laval, NbN multilayer technology on R-plane sapphire. IEEE Trans. Appl. Supercond. 11, 68 (2001)

    Article  Google Scholar 

  26. 26.

    F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, F. Lévy, High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process. Opt. Express 16, 3191 (2008)

    ADS  Article  Google Scholar 

  27. 27.

    W.N. Maung, D.P. Butler, C.A. Huang, Fabrication of NbN thin films by reactive sputtering. J. Vac. Sci. Technol. A Vac. Surf. Films 11, 615 (1993)

    ADS  Article  Google Scholar 

  28. 28.

    Wong, W.D. Sproul, X. Chu, S.A. Barnett, Reactive magnetron sputter deposition of niobium nitride films. J. Vac. Sci. Technol. A Vac. Surf. Films 11, 1528 (1993)

    ADS  Article  Google Scholar 

  29. 29.

    F.M. Smits, Measurement of sheet resistivities with the four-point probe. Bell Syst. Tech. J. 37, 711 (1958)

    Article  Google Scholar 

  30. 30.

    F. Marsili, A. Gaggero, L.H. Li, A. Surrente, R. Leoni, F. Lvy, A. Fiore, High quality superconducting NbN thin films on GaAs. Supercond. Sci. Tech. 22, 095013 (2009)

    ADS  Article  Google Scholar 

  31. 31.

    A.J. Kerman, E.A. Dauler, J.K.W. Yang, K.M. Rosfjord, V. Anant, K.K. Berggren, G.N. Goltsman, Constriction-limited detection efficiency of superconducting nanowire single-photon detectors. Appl. Phys. Lett. 90, 101110 (2007)

    ADS  Article  Google Scholar 

  32. 32.

    L. Maingault, M. Tarkhov, I. Floarya, A. Semenov, R.E. de Lamaestre, P. Cavalier, G. Gol’tsman, J.-P. Poizat, J.-C. Villéger, Spectral dependency of superconducting single photon detectors. J. Appl. Phys. 107, 116103 (2010)

    ADS  Article  Google Scholar 

  33. 33.

    A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznew, N. Kaurova, O. Minaeva, G. Gol’tsman, K.G. Lagoudakis, M. Benkhaoul, D. Lvy, A. Fiore, Superconducting nanowire photonnumber-resolving detector at telecommunication wavelengths. Nat. Photonics 2, 302 (2008)

    Article  Google Scholar 

  34. 34.

    S.N. Dorenbos, P. Forn-Díaz, T. Fuse, A.H. Verbruggen, T. Zijlstra, T.M. Klapwijk, V. Zwiller, Low gap superconducting single photon detectors for infrared sensitivity. Appl. Phys. Lett. 98, 251102 (2011)

    ADS  Article  Google Scholar 

  35. 35.

    Z. Yan, A. Majedi, S. Safavi-Naeini, Physical modeling of hot-electron superconducting single-photon detectors. IEEE Trans. Appl. Supercond. 17, 3789 (2007)

    ADS  Article  Google Scholar 

  36. 36.

    A. Gaggero, S.J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G.J. Hamhuis, R. Nötzel, R. Sanjines, A. Fiore, Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications. Appl. Phys. Lett. 97, 151108 (2010)

    ADS  Article  Google Scholar 

  37. 37.

    A. Korneev, V. Matvienko, O. Minaeva, I. Milstnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Gol’tsman, W. Slysz, A. Pearlman, A. Verevkin, R. Sobolewski, Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared. IEEE Trans. Appl. Supercond. 15, 571 (2005)

    Article  Google Scholar 

  38. 38.

    G.N. Gol’tsman, A. Korneev, I. Rubtsova, I. Milstnaya, G. Chulkova, O. Minaeva, I. Smirnov, B. Voronov, W. Sysz, A. Pearlman, A. Verevkin, R. Sobolweski, Ultra-fast superconducting single-photon detectors for near-infrared-wavelength quantum communications. Phys. Status Solidi (c) 2, 1480 (2005)

    ADS  Article  Google Scholar 

  39. 39.

    G. Gol’tsman, O. Okunev, G. Chulkov, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, R. Sobolewski, Fabrication and properties of an ultrafast NbN hot-electron single-photon detector. IEEE Trans. Appl. Supercond. 11, 574 (2001)

    Article  Google Scholar 

  40. 40.

    W.J. Skocpol, M.R. Beasley, M. Tinkham, Self-heating hotspots in superconducting thin-film microbridges. J. Appl. Phys. 45, 4054 (1974)

    ADS  Article  Google Scholar 

  41. 41.

    A.D. Semenov, G.N. Goltsman, A.A. Korneev, Quantum detection by current carrying superconducting film. Phys. C Supercond. Appl. 351, 439 (2001)

    Google Scholar 

  42. 42.

    M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hubers, N.A. Gippius, Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses. J. Appl. Phys. 108, 014507 (2010)

    ADS  Article  Google Scholar 

  43. 43.

    G.M. Reithmaier, Superconducting detectors for semiconductor quantum photonics (Printy Digitaldruck, München, 2015)

    Google Scholar 

  44. 44.

    Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/, [Online]

  45. 45.

    J.P. Spengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, A. Fiore, Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110 (2011)

    ADS  Article  Google Scholar 

  46. 46.

    F. Marsili, F. Bellei, F. Najafi, A.E. Dane, E.A. Dauler, R.J. Molnar, K.K. Berggren, Efficient single photon detection from 500 nm to 5 µm wavelength. Nano Lett. 12, 4799 (2012)

    ADS  Article  Google Scholar 

  47. 47.

    R. Hadfield, Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696 (2009)

    ADS  Article  Google Scholar 

  48. 48.

    J.M. Gérard, O. Cabrol, B. Sermage, InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si. Appl. Phys. Lett. 68, 3123 (1996)

    ADS  Article  Google Scholar 

  49. 49.

    E. Viasnoff-Schwoob, C. Weisbuch, H. Bensity, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, C.J.M. Smith, Spontaneous emission enhancement of quantum dots in a photonic crystal wire. Phys. Rev. Lett. 95, 183901 (2005)

    ADS  Article  Google Scholar 

  50. 50.

    J. Urayama, T.B. Norris, J. Singh, P. Bhattacharaya, Observation of phonon bottleneck in quantum dot electronic relaxation. Phys. Rev. Lett. 86, 4930 (2001)

    ADS  Article  Google Scholar 

  51. 51.

    J.J. Finley, A.D. Ashmore, A. Lemaître, D.J. Mowbray, M.S. Skolnick, I.E. Itskevich, P.A. Maksym, M. Hopkinson, T.F. Krauss, Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots. Phys. Rev. B 63, 073307 (2001)

    ADS  Article  Google Scholar 

  52. 52.

    H. Nguyen, G. Sallen, C. Voisin, P. Roussignol, C. Diedrichs, G. Cassabois, Optically gated resonant emission of single quantum dots. Phys. Rev. Lett. 108, 057401 (2012)

    ADS  Article  Google Scholar 

  53. 53.

    M.N. Makhonin, J.E. Dixon, R.J. Coles, B. Royall, I.J. Luxmoore, E. Clarke, M. Hugues, M.S. Skolnick, A.M. Fox, Waveguide coupled resonance fluorescence from on-chip quantum emitters. Nano Lett. 14, 6997 (2014)

    ADS  Article  Google Scholar 

  54. 54.

    A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, A. Abstreiter, Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612 (2002)

    ADS  Article  Google Scholar 

  55. 55.

    C. Matthiesen, A.N. Vamivakas, M. Atatür, Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge D. Sahin and A. Fiore (TU Eindhoven), K. Berggren and F. Najafi (MIT), and R. Hadfield (University of Glasgow) for useful discussions and the financial support from BMBF via QuaHL-Rep, project number 01BQ1036, Q.com via project number 16KIS0110, the EU via the integrated project SOLID and the DFG via SFB 631-B3.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Kaniber.

Additional information

This paper is part of the topical collection “Quantum Repeaters: From Components to Strategies” guest edited by Manfred Bayer, Christoph Becher and Peter van Loock.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaniber, M., Flassig, F., Reithmaier, G. et al. Integrated superconducting detectors on semiconductors for quantum optics applications. Appl. Phys. B 122, 115 (2016). https://doi.org/10.1007/s00340-016-6376-1

Download citation

Keywords

  • Ridge Waveguide
  • Nitrogen Partial Pressure
  • Excitation Power Density
  • Dark Count Rate
  • Niobium Nitride