Skip to main content
Log in

CN and C2 vibrational spectra analysis in molecular LIBS of organic materials

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

With the objective of investigation of the influence of molecular structure on CN violet and C2 Swan bands system spectra, plasma emissions from different organic materials, including polycyclic aromatic hydrocarbons, aromatic carboxylic acid, aliphatic carboxylic acid, amides and polymers, have been analyzed by laser-induced breakdown spectroscopy (LIBS) technique in air. To evaluate the influence of N2 and O2 molecules concentration on the CN and C2 molecular emissions, LIB spectra of four different samples have been recorded in air (approximately 80 % N2 and 20 % O2), nitrogen, oxygen and argon atmospheres. Experimental results indicate that the main reason for the absence of C2 emission in LIB spectra of samples which do not contain C–C bonds, when measurements were taken in air, is the presence of oxygen which could potentially deplete C2 emission rather than the absence of C–C bonds in their structure. Also, comparisons between experiment and theory spectra are made using a Nelder–Mead temperature program for CN and C2 bands with the ∆ν = 0 sequences from LIB spectra of different samples in various atmospheres. Furthermore, CN and C2 vibrational temperatures in Kelvin (K) are calculated from these spectral fittings. Both CN and C2 vibrational temperatures have highest values in argon atmosphere, and increasing the oxygen concentration in ambient atmosphere decreased those in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. A.W. Miziolek, V. Palleschi, I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  2. A. Portnov, S. Rosenwaks, I. Bar, Identification of organic compounds in ambient air via characteristic emission following laser ablation. J. Lumen. 102, 408–413 (2003)

    Google Scholar 

  3. A. Portnov, S. Rosenwaks, I. Bar, Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air. Appl. Opt. 42, 2835–2842 (2003)

    Article  ADS  Google Scholar 

  4. S. Rai, A.K. Rai, S.N. Thakur, Identification of nitro-compounds with LIBS. Appl. Phys. B 91, 645–650 (2008)

    Article  ADS  Google Scholar 

  5. S. Rai, A.K. Rai, Characterization of organic materials by LIBS for exploration of correlation between molecular and elemental LIBS signals. AIP Adv. 1, 042103 (2011)

    Article  ADS  Google Scholar 

  6. M. Banaee, S.H. Tavassoli, Discrimination of polymers by laser induced breakdown spectroscopy together with the DFA method. Polym. Test. 31, 759–764 (2012)

    Article  Google Scholar 

  7. S. Grégoire, V. Motto-Ros, Q.L. Ma, W.Q. Lei, X.C. Wang, F. Pelascini, F. Surma, V. Detalle, J. Yu, Correlation between native bonds in a polymeric material and molecular emissions from the laser-induced plasma observed with space and time resolved imaging. Spectrochim. Acta Part B 74, 31–37 (2012)

    Article  ADS  Google Scholar 

  8. Á. Fernández-Bravo, T. Delgado, P. Lucena, J.J. Laserna, Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds. Spectrochim. Acta Part B 89, 77–83 (2013)

    Article  Google Scholar 

  9. J. Anzano, R.-J. Lasheras, B. Bonilla, J. Casas, Classification of polymers by determining of C1:C2:CN:H:N: O ratios by laser-induced plasma spectroscopy (LIPS). Polym. Test. 27, 705–710 (2008)

    Article  Google Scholar 

  10. Y. Yu, L.B. Guo, Z.Q. Hao, X.Y. Li, M. Shen, Q.D. Zeng, K.H. Li, X.Y. Zeng, Y.F. Lu, Z. Ren, Accuracy improvement on polymer identification using laser-induced breakdown spectroscopy with adjusting spectral weightings. Opt. Express 22, 3895–3901 (2014)

    Article  ADS  Google Scholar 

  11. J.L. Gottfried, Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy. Appl. Opt. 52, B10–B19 (2013)

    Article  Google Scholar 

  12. J.L. Gottfried, Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles. Appl. Opt. 51, B13–B21 (2012)

    Article  Google Scholar 

  13. S. Sreedhar, E.N. Rao, G.M. Kumar, S.P. Tewari, S.V. Rao, Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one,1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy. Spectrochim. Acta Part B 87, 121–129 (2013)

    Article  ADS  Google Scholar 

  14. Á. Fernández-Bravo, P. Lucena, J.J. Laserna, Selective sampling and laser-induced breakdown spectroscopy (LIBS) analysis of organic explosive residues on polymer surfaces. Appl. Spectrosc. 66, 1197–1203 (2012)

    Article  ADS  Google Scholar 

  15. J. Serrano, J. Moros, C. Sánchez, J. Macías, J.J. Laserna, Advanced recognition of explosives in traces on polymer surfaces using LIBS and supervised learning classifiers. Anal. Chim. Acta 806, 107–116 (2014)

    Article  Google Scholar 

  16. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, C. Vallebona, Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis. Appl. Opt. 42, 6133–6137 (2003)

    Article  ADS  Google Scholar 

  17. A.C. Samuels, F.C. DeLucia, K.L. McNesby, A.W. Miziolek, Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential. Appl. Opt. 42, 6205–6209 (2003)

    Article  ADS  Google Scholar 

  18. S. Shadman, M. Bahreini, S.H. Tavassoli, Comparison between elemental composition of human fingernails of healthy and opiumaddicted subjects by laser-induced breakdown spectroscopy. Appl. Opt. 51, 2004–2011 (2012)

    Article  ADS  Google Scholar 

  19. W.Q. Lei, Q.L. Ma, V. Motto-Ros, X.S. Bai, L.J. Zheng, H.P. Zeng, J. Yu, Effect of ablation photon energy on the distribution of molecular species in laser-induced plasma from polymer in air. Spectrochim. Acta Part B 73, 7–12 (2012)

    Article  ADS  Google Scholar 

  20. L. St-Onge, R. Sing, S. Béchard, M. Sabsabi, Carbon emissions following 1:064 μm laser ablation of graphite and organic samples in ambient air. Appl. Phys. A 69, S913–S916 (1999)

    Article  ADS  Google Scholar 

  21. S. Grégoire, M. Boudinet, F. Pelascini, F. Surma, V. Detalle, Y. Holl, Laser-induced breakdown spectroscopy for polymer identification. Anal. Bioanal. Chem. 400, 3331–3340 (2011)

    Article  Google Scholar 

  22. S.J. Mousavi, M.H. Farsani, S.M.R. Darbani, N. Asadorian, M. Soltanolkotabi, A.E. Majd, Identification of atomic lines and molecular bands of benzene and carbon disulfide liquids by using LIBS. Appl. Opt. 54, 1713–1720 (2015)

    Article  ADS  Google Scholar 

  23. P. Lucena, A. Doña, L.M. Tobaria, J.J. Laserna, New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy. Spectrochim. Acta Part B 66, 12–20 (2011)

    Article  ADS  Google Scholar 

  24. M. Dong, X. Mao, J.J. Gonzalez, J. Lu, R.E. Russo, Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium. J. Anal. At. Spectrom. 27, 2066–2075 (2012)

    Article  Google Scholar 

  25. M. Dong, J. Lu, S. Yao, Z. Zhong, J. Li, J. Li, W. Lu, Experimental study on the characteristics of molecular emission spectroscopy for the analysis of solid materials containing C and N. Opt. Express 19, 17021–17029 (2011)

    Article  ADS  Google Scholar 

  26. F.C.D. Lucia, J.L. Gottfried Jr, Influence of molecular structure on the laser-induced plasma emission of the explosive RDX and organic polymers. J. Phys. Chem. A 117, 9555–9563 (2013)

    Article  Google Scholar 

  27. http://www.plasus.de/index.php?page=software_specline&lang=en

  28. K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure (Springer, Berlin, 1979)

    Book  Google Scholar 

  29. V.I. Babushok, F.C. DeLucia, P.J. Dagdigian, J.L. Gottfried, C.A. Munson, M.J. Nusca, A.W. Miziolek, Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX). Spectrochim. Acta Part B 62, 1321–1328 (2007)

    Article  ADS  Google Scholar 

  30. Q. Ma, P.J. Dagdigian, Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds. Anal. Bioanal. Chem. 400, 3193–3205 (2011)

    Article  Google Scholar 

  31. F.C. De Lucia, J.L. Gottfried Jr, Characterization of a series of nitrogen-rich molecules using laser induced breakdown spectroscopy. Propellants Explos. Pyrotech. 35, 268–277 (2010)

    Article  Google Scholar 

  32. A. Kushwaha, R.K. Thareja, Dynamics of laser-ablated carbon plasma: formation of C2 and CN. Appl. Opt. 47, G65–G71 (2008)

    Article  Google Scholar 

  33. Z. Zelinger, M. Novotný, J. Bulíř, J. Lančok, P. Kuba´t, M. Jeli´nek, Laser plasma plume kinetic spectroscopy of the nitrogen and carbon species. Contrib. Plasma Phys. 43, 426–432 (2003)

    Article  ADS  Google Scholar 

  34. R.K. Thareja, R.K. Dwivedi, K. Ebihara, Interaction of ambient nitrogen gas and laser ablated carbon plume: formation of CN. Nucl. Instrum. Methods Phys. Res. B 192, 301–310 (2002)

    Article  ADS  Google Scholar 

  35. J.O. Hornkohl, C.G. Parigger, J.W.L. Lewis, Temperature Measurements from CN spectra in a laser-induced plasma. J. Quant. Spectrosc. Radiat. Transf. 46, 405–411 (1991)

    Article  ADS  Google Scholar 

  36. C.G. Parigger, D.H. Plemmons, J.O. Hornkohl, J.W.L. Lewis, Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 swan system. J. Quant. Spectrosc. Radiat. Transf. 52, 707–711 (1994)

    Article  ADS  Google Scholar 

  37. C.G. Parigger, A.C. Woods, D.M. Surmick, G. Gautam, M.J. Witte, J.O. Hornkohl, Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide. Spectrochim. Acta Part B 107, 132–138 (2015)

    Article  ADS  Google Scholar 

  38. M.J. Witte, C.G. Parigger, Laser-induced spectroscopy of graphene ablation in air. J. Phys. Conf. Ser. 548, 012052 (2014)

    Article  ADS  Google Scholar 

  39. M.J. Witte, C.G. Parigger, Measurement and analysis of carbon swan spectra following laser-induced optical breakdown in air. Int. Rev. At. Mol. Phys. 1, 63–67 (2013)

    Google Scholar 

  40. Reinhard Noll, Laser-Induced Breakdown Spectroscopy (Fundamentals and Applications) (Springer, Berlin, 2012)

    Book  Google Scholar 

  41. R.J. Lasheras, C. Bello-Gálvez, J.M. Anzano, Quantitative analysis of oxide materials by laser-induced breakdown spectroscopy with argon as an internal standard. Spectrochim. Acta Part B 82, 65–70 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Hereby, we would like to acknowledge Malek Ashtar Optics and Laser Science and Technology Research Center for supplying the equipment used in the present study. We also thank Dr. James O. Hornkohl from University of Tennessee Space Institute for providing us the NMT code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Mousavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.J., Hemati Farsani, M., Darbani, S.M.R. et al. CN and C2 vibrational spectra analysis in molecular LIBS of organic materials. Appl. Phys. B 122, 106 (2016). https://doi.org/10.1007/s00340-016-6371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6371-6

Keywords

Navigation