Skip to main content
Log in

Investigation of the nonlinear refractive index of single-crystalline thin gold films and plasmonic nanostructures

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The nonlinear refractive index of plasmonic materials may be used to obtain nonlinear functionality, e.g., power-dependent switching. Here, we investigate the nonlinear refractive index of single-crystalline gold in thin layers and nanostructures on dielectric substrates. In a first step, we implement a z-scan setup to investigate ~100-µm-sized thin-film samples. We determine the nonlinear refractive index of fused silica, n 2(SiO2) = 2.9 × 10−20 m2/W, in agreement with literature values. Subsequent z-scan measurements of single-crystalline gold films reveal a damage threshold of 0.22 TW/cm2 and approximate upper limits of the real and imaginary parts of the nonlinear refractive index, |n 2′(Au)| < 1.2 × 10−16 m2/W and |n 2″(Au)| < 0.6 × 10−16 m2/W, respectively. To further determine possible effects of a nonlinear refractive index in plasmonic circuitry, interferometry is proposed as a phase-sensitive probe. In corresponding nanostructures, relative phase changes between two propagating near-field modes are converted to amplitude changes by mode interference. Power-dependent experiments using sub-10-fs near-infrared pulses and diffraction-limited resolution (NA = 1.4) reveal linear behavior up to the damage threshold (0.23 times relative to that of a solid single-crystalline gold film). An upper limit for the nonlinear power-dependent phase change between two propagating near-field modes is determined to Δφ < 0.07 rad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  2. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  3. M. Stockman, Opt. Express 19, 22029 (2011)

    Article  ADS  Google Scholar 

  4. L. Novotny, N. van Hulst, Nat. Photonics 5, 83 (2011)

    Article  ADS  Google Scholar 

  5. P. Biagioni, J.-S. Huang, B. Hecht, Rep. Prog. Phys. 75, 024402 (2012)

    Article  ADS  Google Scholar 

  6. Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N.J. Halas, H. Xu, Nano Lett. 10, 1950 (2010)

    Article  ADS  Google Scholar 

  7. H. Wei, Z. Wang, X. Tian, M. Käll, H. Xu, Nat. Commun. 2, 387 (2011)

    Article  ADS  Google Scholar 

  8. C. Rewitz, G. Razinskas, P. Geisler, E. Krauss, S. Goetz, M. Pawłowska, B. Hecht, T. Brixner, Phys. Rev. Appl. 1, 014007 (2014)

    Article  ADS  Google Scholar 

  9. G. Lenz, J. Zimmermann, T. Katsufuji, M.E. Lines, H.Y. Hwang, S. Spälter, R.E. Slusher, S.-W. Cheong, J.S. Sanghera, I.D. Aggarwal, Opt. Lett. 25, 254 (2000)

    Article  ADS  Google Scholar 

  10. A. Reiserer, J.-S. Huang, B. Hecht, T. Brixner, Opt. Express 18, 11810 (2010)

    Article  ADS  Google Scholar 

  11. P. Ginzburg, A. Hayat, N. Berkovitch, M. Orenstein, Opt. Lett. 35, 1551 (2010)

    Article  ADS  Google Scholar 

  12. S. Palomba, L. Novotny, Phys. Rev. Lett. 101, 056802 (2008)

    Article  ADS  Google Scholar 

  13. J. Renger, R. Quidant, N. van Hulst, L. Novotny, Phys. Rev. Lett. 104, 046803 (2010)

    Article  ADS  Google Scholar 

  14. M. Lippitz, M.A. van Dijk, M. Orrit, Nano Lett. 5, 799 (2005)

    Article  ADS  Google Scholar 

  15. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, A. Leitenstorfer, Phys. Rev. Lett. 103, 257404 (2009)

    Article  ADS  Google Scholar 

  16. M. Hentschel, T. Utikal, H. Giessen, M. Lippitz, Nano Lett. 12, 3778 (2012)

    Article  ADS  Google Scholar 

  17. R.W. Boyd, Z. Shi, I. De Leon, Opt. Commun. 326, 74 (2014)

    Article  ADS  Google Scholar 

  18. D.D. Smith, Y. Yoon, R.W. Boyd, J.K. Campbell, L.A. Baker, R.M. Crooks, M. George, J. Appl. Phys. 86, 6200 (1999)

    Article  ADS  Google Scholar 

  19. P. Wang, Y. Lu, L. Tang, J. Zhang, H. Ming, J. Xie, F.-H. Ho, H.-H. Chang, H.-Y. Lin, D.-P. Tsai, Opt. Commun. 229, 425 (2004)

    Article  ADS  Google Scholar 

  20. N. Rotenberg, A.D. Bristow, M. Pfeiffer, M. Betz, H.M. van Driel, Phys. Rev. B 75, 155426 (2007)

    Article  ADS  Google Scholar 

  21. E. Xenogiannopoulou, P. Aloukos, S. Couris, E. Kaminska, A. Piotrowska, E. Dynowska, Opt. Commun. 275, 217 (2007)

    Article  ADS  Google Scholar 

  22. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955 (1989)

    Article  ADS  Google Scholar 

  23. M. Sheik-Bahae, A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  24. R. Sutherland, Handbook of Nonlinear Optics, 2nd edn. (CRC Press, London, 2003)

    Book  Google Scholar 

  25. P.B. Chapple, J. Staromlynska, R.G. McDuff, JOSA B 11, 975 (1994)

    Article  ADS  Google Scholar 

  26. R. Trebino, K.W. DeLong, D.N. Fittinghoff, J.N. Sweetser, M.A. Krumbügel, B.A. Richman, D.J. Kane, Rev. Sci. Instrum. 68, 3277 (1997)

    Article  ADS  Google Scholar 

  27. D. Milam, Appl. Opt. 37, 546 (1998)

    Article  ADS  Google Scholar 

  28. H.I. Elim, W. Ji, F. Zhu, Appl. Phys. B 82, 439 (2006)

    Article  ADS  Google Scholar 

  29. R. DeSalvo, A.A. Said, D.J. Hagan, E.W. van Stryland, M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324 (1996)

    Article  ADS  Google Scholar 

  30. T. Olivier, F. Billard, H. Akhouayri, Opt. Express 12, 1377 (2004)

    Article  ADS  Google Scholar 

  31. J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J.C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, B. Hecht, Nat. Commun. 1, 150 (2010)

    Article  ADS  Google Scholar 

  32. X. Wu, R. Kullock, E. Krauss, B. Hecht, Cryst. Res. Technol. 50, 595 (2015)

    Article  Google Scholar 

  33. C. Kern, M. Zürch, J. Petschulat, T. Pertsch, B. Kley, T. Käsebier, U. Hübner, C. Spielmann, Appl. Phys. A 104, 15 (2011)

    Article  ADS  Google Scholar 

  34. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  35. R. de Nalda, R. del Coso, J. Requejo-Isidro, J. Olivares, A. Suarez-Garcia, J. Solis, C.N. Afonso, JOSA B 19, 289 (2002)

    Article  ADS  Google Scholar 

  36. P. Geisler, G. Razinskas, E. Krauss, X.-F. Wu, C. Rewitz, P. Tuchscherer, S. Goetz, C.-B. Huang, T. Brixner, B. Hecht, Phys. Rev. Lett. 111, 183901 (2013)

    Article  ADS  Google Scholar 

  37. P. Mühlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2005)

    Article  ADS  Google Scholar 

  38. J.-S. Huang, T. Feichtner, P. Biagioni, B. Hecht, Nano Lett. 9, 1897 (2009)

    Article  ADS  Google Scholar 

  39. M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L.E. Hueso, A. Chuvilin, R. Hillenbrand, Nat. Photonics 5, 283 (2011)

    Article  ADS  Google Scholar 

  40. P.M. Krenz, R.L. Olmon, B.A. Lail, M.B. Raschke, G.D. Boreman, Opt. Express 18, 21678 (2010)

    Article  ADS  Google Scholar 

  41. E. Verhagen, M. Spasenović, A. Polman, L. (Kobus) Kuipers, Phys. Rev. Lett. 102, 203904 (2009)

    Article  ADS  Google Scholar 

  42. M. Cinchetti, A. Gloskovskii, S.A. Nepjiko, G. Schönhense, H. Rochholz, M. Kreiter, Phys. Rev. Lett. 95, 047601 (2005)

    Article  ADS  Google Scholar 

  43. L. Lepetit, G. Cheriaux, M. Joffre, JOSA B 12, 2467 (1995)

    Article  ADS  Google Scholar 

  44. C. Rewitz, T. Keitzl, P. Tuchscherer, J.-S. Huang, P. Geisler, G. Razinskas, B. Hecht, T. Brixner, Nano Lett. 12, 45 (2012)

    Article  ADS  Google Scholar 

  45. C. Rewitz, T. Keitzl, P. Tuchscherer, S. Goetz, P. Geisler, G. Razinskas, B. Hecht, T. Brixner, Opt. Express 20, 14632 (2012)

    Article  ADS  Google Scholar 

  46. M. Pawłowska, S. Goetz, C. Dreher, M. Wurdack, E. Krauss, G. Razinskas, P. Geisler, B. Hecht, T. Brixner, Opt. Express 22, 31496 (2014)

    Article  ADS  Google Scholar 

  47. T. Wu, J. Tang, B. Hajj, M. Cui, Opt. Express 19, 12961 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Science Foundation (DFG) within the Priority Program “Ultrafast Nanooptics” (SPP 1391).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bert Hecht or Tobias Brixner.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goetz, S., Razinskas, G., Krauss, E. et al. Investigation of the nonlinear refractive index of single-crystalline thin gold films and plasmonic nanostructures. Appl. Phys. B 122, 94 (2016). https://doi.org/10.1007/s00340-016-6370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6370-7

Keywords

Navigation