Applied Physics B

, 122:80 | Cite as

Strong-field photoemission in nanotip near-fields: from quiver to sub-cycle electron dynamics

  • K. E. EchternkampEmail author
  • G. Herink
  • S. V. Yalunin
  • K. Rademann
  • S. Schäfer
  • C. Ropers
Part of the following topical collections:
  1. Ultrafast Nanooptics


Metallic nanotips exhibit large electric field enhancements over an extremely broad bandwidth spanning from the optical domain down to static fields. They therefore constitute ideal model systems for the investigation of the inherent frequency scalings of highly nonlinear and strong-field phenomena. Here, we present a comprehensive study of strong-field photoemission from individual metallic nanotips. Combining high local fields and variable-wavelength mid-infrared pulses, we investigate electron dynamics governed by the nanoscale confinement of the optical near-field. In particular, we characterize a transition to sub-cycle, field-driven electron acceleration. The experimental findings are corroborated by semiclassical calculations within a two-step model.


Cutoff Energy Decay Length Strong Laser Field Emission Phase Keldysh Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank L. Wimmer for fruitful discussions and B. Schröder for technical support. Financial support by the Deutsche Forschungsgemeinschaft (SPP 1391 “Ultrafast Nanooptics” and SFB 1073, Project A05) is gratefully acknowledged.


  1. 1.
    E.K. Damon, R.G. Tomlinson, Appl. Opt. 2(5), 546 (1963)ADSCrossRefGoogle Scholar
  2. 2.
    P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127–1130 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    L. Keldysh, Sov. Phys. JETP 20, 1307–1314 (1965)MathSciNetGoogle Scholar
  4. 4.
    P. Corkum, Phys. Rev. Lett. 71(13), 1994–1997 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72(2), 545–591 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    F. Krausz, Rev. Mod. Phys. 81(1), 163–234 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    A.L. Cavalieri, N. Müller, T. Uphues, V.S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P.M. Echenique, R. Kienberger, F. Krausz, U. Heinzmann, Nature 449, 1029–1032 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    S. Zherebtsov, T. Fennel, J. Plenge, E. Antonsson, I. Znakovskaya, A. Wirth, O. Herrwerth, F. Süßmann, C. Peltz, I. Ahmad, S.A. Trushin, V. Pervak, S. Karsch, M.J.J. Vrakking, B. Langer, C. Graf, M.I. Stockman, F. Krausz, E. Rühl, M.F. Kling, Nat. Phys. 7, 656–662 (2011)CrossRefGoogle Scholar
  9. 9.
    P. Racz, S.E. Irvine, M. Lenner, A. Mitrofanov, a Baltuska, Elezzabi, Appl. Phys. Lett. 98, 111116 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    M. Schultze, E.M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V.S. Yakovlev, M.I. Stockman, F. Krausz, Nature 493, 75–78 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    P. Dombi, A. Hörl, P. Racz, I. Marton, A. Trügler, J.R. Krenn, U. Hohenester, Nano Lett. 13, 674–678 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S.W. Koch, R. Huber, Nat. Photon. 8, 119–123 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    K. Iwaszczuk, M. Zalkovskij, A.C. Strikwerda, P.U. Jepsen, Optica 2, 116–123 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Feist, K.E. Echternkamp, J. Schauss, S.V. Yalunin, S. Schäfer, C. Ropers, Nature 521, 200–203 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M.A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    P. Hommelhoff, C. Kealhofer, M.A. Kasevich, Phys. Rev. Lett. 97(24), 247402 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, H. Batelaan, N. J. Phys. 9, 142 (2007)CrossRefGoogle Scholar
  18. 18.
    H. Yanagisawa, C. Hafner, P. Don, M. Klöckner, D. Leuenberger, T. Greber, J. Osterwalder, M. Hengsberger, Phys. Rev. B. 81, 115429 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    C. Ropers, D.R. Solli, C.P. Schulz, C. Lienau, T. Elsaesser, Phys. Rev. Lett. 98, 043907 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    C. Ropers, T. Elsaesser, G. Cerullo, M. Zavelani-Rossi, C. Lienau, N. J. Phys. 9(10), 397 (2007)CrossRefGoogle Scholar
  21. 21.
    R. Bormann, M. Gulde, A. Weismann, S.V. Yalunin, C. Ropers, Phys. Rev. Lett. 105, 147601 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    M. Schenk, M. Krüger, P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    M. Krüger, M. Schenk, P. Hommelhoff, Nature 475(7354), 78–81 (2011)CrossRefGoogle Scholar
  24. 24.
    B. Piglosiewicz, S. Schmidt, D.J. Park, J. Vogelsang, P. Groß, C. Manzoni, P. Farinello, G. Cerullo, C. Lienau, Nat. Photon. 8, 37–42 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    F. Süßmann, L. Seiffert, S. Zherebtsov, V. Mondes, J. Stierle, M. Arbeiter, J. Plenge, P. Rupp, C. Peltz, A. Kessel, S.A. Trushin, B. Ahn, D. Kim, C. Graf, E. Rühl, M.F. Kling, T. Fennel, Nat. Commun. 6, 7944 (2015)CrossRefGoogle Scholar
  26. 26.
    S.V. Yalunin, G. Herink, D.R. Solli, M. Krüger, P. Hommelhoff, M. Diehn, A. Munk, C. Ropers, Ann. Phys. (Berlin) 525, L12–L18 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    G. Wachter, C. Lemell, J. Burgdörfer, Phys. Rev. B 86, 035402 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    M. Krüger, M. Schenk, M. Förster, P. Hommelhoff, J. Phys. B 45(7), 074006 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    S. Thomas, M. Krüger, M. Frster, M. Schenk, P. Hommelhoff, Nano Lett. 13(10), 4790–4794 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    G. Herink, D.R. Solli, M. Gulde, C. Ropers, Nature 483, 190193 (2012)CrossRefGoogle Scholar
  31. 31.
    B. Piglosiewicz, J. Vogelsang, S. Schmidt, D.J. Park, P. Groß, C. Lienau, Quantum Matter 3(4), 297–306 (2014)CrossRefGoogle Scholar
  32. 32.
    D.J. Park, B. Piglosiewicz, S. Schmidt, H. Kollmann, M. Mascheck, C. Lienau, Phys. Rev. Lett. 109, 244803 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    L. Wimmer, G. Herink, D.R. Solli, S.V. Yalunin, K.E. Echternkamp, C. Ropers, Nat. Phys. 10, 432–436 (2014)CrossRefGoogle Scholar
  34. 34.
    G. Herink, L. Wimmer, C. Ropers, N. J. Phys. 16, 123005 (2014)CrossRefGoogle Scholar
  35. 35.
    B. Schröder, M. Sivis, R. Bormann, S. Schäfer, C. Ropers, Appl. Phys. Lett. 107, 231105 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    J. Vogelsang, J. Robin, B.J. Nagy, P. Dombi, D. Rosenkranz, M. Schiek, P. Gro, C. Lienau, Nano Lett. 15, 4685–4691 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    K. Kulander, K. Schafer, J. Krause, in Super-Intense Laser-Atom Physics, ed. by B. Piraux, A. LHuillier, K. Rzewski. NATO ASI Series. vol. 316 (Springer, Berlin, 1993), p. 95–110Google Scholar
  38. 38.
    P. Kruit, F.H.J. Read, Phys. E 16, 313–324 (1983)ADSCrossRefGoogle Scholar
  39. 39.
    K. Rademann, T. Rech, B. Kaiser, U. Even, F. Hensel, Rev. Sci. Instrum. 62(8), 1932 (1991)ADSCrossRefGoogle Scholar
  40. 40.
    G. Paulus, W. Becker, W. Nicklich, H. Walther, J. Phys. B 27(21), L703 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    H. van Linden, van den Heuvell, H. Muller, in Multiphoton Processes, ed. by S. Smith, P. Knight, vol. 8 (Cambridge Studies in Modern Optics, 1988)Google Scholar
  42. 42.
    E.L. Murphy, R.H. Good, Phys. Rev. 102(6), 1464–1473 (1956)ADSCrossRefGoogle Scholar
  43. 43.
    R.G. Forbes, Appl. Phys. Lett. 89, 113122 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    R.G. Forbes, J.H.B. Deane, Proc. R. Soc. Lond. Ser. A 463, 2907–2927 (2007)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    H.C. Miller, J. Franklin Inst. 282(6), 382–388 (1966)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • K. E. Echternkamp
    • 1
    Email author
  • G. Herink
    • 1
  • S. V. Yalunin
    • 1
  • K. Rademann
    • 2
  • S. Schäfer
    • 1
  • C. Ropers
    • 1
    • 3
  1. 1.4th Physical Institute - Solids and NanostructuresGeorg-August-Universität GöttingenGöttingenGermany
  2. 2.Institut für ChemieHumboldt-Universität zu BerlinBerlinGermany
  3. 3.International Center for Advanced Studies of Energy Conversion (ICASEC)Georg-August-Universität GöttingenGöttingenGermany

Personalised recommendations