Applied Physics B

, 122:74 | Cite as

Pulsed amplified spontaneous Raman emission at 2.2 μm in silica-based fiber

  • Huawei Jiang
  • Lei Zhang
  • Xuezong Yang
  • Ting Yu
  • Yan Feng


All-fiber source at 2.2 μm is investigated with amplified spontaneous Raman scattering process in highly Ge-doped silica fiber. By optimizing the gain fiber length, the second-order Raman Stokes light at 2.43 μm is suppressed and 3 W first-order Raman Stokes light at 2.2 μm is obtained with a homemade 2-μm Q-switched Tm3+-doped fiber laser as pump source. The conversion efficiency is 35.9 % from 2.0 to 2.2 μm, and the peak power of the 2.2-μm laser is about 400 W.


Fiber Length Incident Pump Power Raman Gain Seed Laser Dope Fiber Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by the National Natural Science Foundation of China (Nos. 61575210 and 61378026).


  1. 1.
    I.T. Sorokina, V.V. Dvoyrin, N. Tolstik, E. Sorokin, IEEE J. Sel. Top. Quantum Electron. 20, 1 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Henriksson, M. Tiihonen, V. Pasiskevicius, F. Laurell, Appl. Phys. B 88, 37–41 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    G. Stoeppler, N. Thilmann, V. Pasiskevicius, A. Zukauskas, C. Canalias, M. Eichhorn, Opt. Express 20, 4509–4517 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    P.F. Moulton, G.A. Rines, E.V. Slobodtchikov, K.F. Wall, G. Frith, B. Samson, A.L.G. Carter, IEEE J. Sel. Top. Quantum Electron. 15, 85 (2009)CrossRefGoogle Scholar
  5. 5.
    G.D. Goodno, L.D. Book, J.E. Rothenberg, Opt. Lett. 34, 1204 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    K. Yin, B. Zhang, G.H. Xue, L. Li, J. Hou, Opt. Express 22, 19947 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    N. Simakov, A. Hemming, W.A. Clarkson, J. Haub, A. Carter, Opt. Express 21, 28415 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    V. Fortin, M. Bernier, J. Carrier, R. Vallée, Opt. Lett. 36, 4152–4154 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    V. Fortin, M. Bernier, D. Faucher, J. Carrier, R. Vallee, Opt. Express 20, 19412 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M. Duhant, W. Renard, G. Canat, T.N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, G. Renversez, Opt. Lett. 36, 2859–2861 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    E.M. Dianov, I.A. Bufetov, V.M. Mashinsky, V.B. Neustruev, O.I. Medvedkov, A.V. Shubin, M.A. Melkumov, A.N. Gur’yanov, V.F. Khopin, M.V. Yashkov, Quantum Electron. 34, 695 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    B.A. Cumberland, S.V. Popov, J.R. Taylor, O.I. Medvedkov, S.A. Vasiliev, E.M. Dianov, Opt. Lett. 32, 1848–1850 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    P.T. Rakich, Y. Fink, M. Soljačić, Opt. Lett. 33, 1690 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    J. Liu, F. Tan, H. Shi, P. Wang, Opt. Express 22, 28383 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    H.W. Jiang, L. Zhang, Y. Feng, Opt. Lett. 40, 3249 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Huawei Jiang
    • 1
    • 2
  • Lei Zhang
    • 1
  • Xuezong Yang
    • 1
    • 2
  • Ting Yu
    • 1
  • Yan Feng
    • 1
  1. 1.Shanghai Key Laboratory of Solid State Laser and Application, and Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations