Applied Physics B

, 122:57 | Cite as

A single-ion trap with minimized ion–environment interactions

  • P. B. R. Nisbet-JonesEmail author
  • S. A. King
  • J. M. Jones
  • R. M. Godun
  • C. F. A. Baynham
  • K. Bongs
  • M. Doležal
  • P. Balling
  • P. Gill


We present a new single-ion endcap trap for high-precision spectroscopy that has been designed to minimize ion–environment interactions. We describe the design in detail and then characterize the working trap using a single trapped \(^{171}{\rm Yb}^{+}\) ion. Excess micromotion has been eliminated to the resolution of the detection method, and the trap exhibits an anomalous phonon heating rate of \(d\langle n\rangle /{\mathrm{d}}t = 24 ^{+30}_{-24}\,{\rm s}^{-1}\). The thermal properties of the trap structure have also been measured with an effective temperature rise at the ion’s position of \({\Delta }T_{\mathrm{(ion)}} = 0.14 \pm 0.14\,{\rm K}\). The small perturbations to the ion caused by this trap make it suitable to be used for an optical frequency standard with fractional uncertainties below the \(10^{-18}\) level.


Compensation Voltage Trap Structure Secular Frequency Fractional Uncertainty Endcap Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the European Metrology Research Programme (EMRP), the UK National Measurement System, and the European Space Agency (ESA). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.


  1. 1.
    R.M. Godun, P.B.R. Nisbet-Jones, J.M. Jones, S.A. King, L.A.M. Johnson, H.S. Margolis, K. Szymaniec, S.N. Lea, K. Bongs, P. Gill, Frequency ratio of two optical clock transitions in \(^{171}\)Yb\(^{+}\) and constraints on the time-variation of fundamental constants. Phys. Rev. Lett. 113, 210801 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, E. Peik, Improved limit on a temporal variation of m\(_{p}\)/m\(_{e}\) from comparisons of Yb\(^{+}\) and Cs atomic clocks. Phys. Rev. Lett. 113, 210802 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    L.W. Wansbeek, B.K. Sahoo, R.G.E. Timmermans, K. Jungmann, B.P. Das, D. Mukherjee, Atomic parity nonconservation in Ra\(^{+}\). Phys. Rev. A 78, 050501(R) (2008)ADSCrossRefGoogle Scholar
  4. 4.
    R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, C.F. Roos, Quantum simulation of the Dirac equation. Nature 463, 68 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    N.C. Menicucci, G.J. Milburn, Single trapped ion as a time-dependent harmonic oscillator. Phys. Rev. A 76, 052105 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    D. Hucul, I.V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S.M. Clark, C. Monroe, Modular entanglement of atomic qubits using both photons and phonons. Nat. Phys. 11, 37 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Gessner, M. Ramm, T. Pruttivarasin, a Buchleitner, H.P. Breuer, H. Häffner, Local detection of quantum correlations with a single trapped ion. Nat. Phys. 10, 105 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Brownnutt, M. Kumph, P. Rabl, R. Blatt, Ion-trap measurements of electric-field noise near surfaces. arXiv, 1409.6572 (2014)Google Scholar
  9. 9.
    P. Dubé, A. Madej, Z. Zhou, J. Bernard, Evaluation of systematic shifts of the \(^{88}\)Sr\(^{+}\) single-ion optical frequency standard at the \(10^{-17}\) level. Phys. Rev. A 87, 023806 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    E. Peik, T. Schneider, C. Tamm, Laser frequency stabilization to a single ion. J. Phys. B: At. Mol. Opt. Phys. 39, 145–158 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    C.A. Schrama, E. Peik, W.W. Smith, H. Walther, Novel miniature ion traps. Opt. Commun. 101, 32–36 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    A. Madej, P. Dubé, Z. Zhou, J.E. Bernard, M. Gertsvolf, \(^{88}\)Sr\(^{+}\) 445-THz single-ion reference at the \(10^{-17}\) level via control and cancellation of systematic uncertainties and its measurement against the SI second. Phys. Rev. Lett. 109, 203002 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    H. Takahashi, A. Wilson, A. Riley-Watson, F. Oručević, N. Seymour-Smith, M. Keller, W. Lange, An integrated fiber trap for single-ion photonics. N. J. Phys. 15, 053011 (2013)CrossRefGoogle Scholar
  14. 14.
    Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    M. Ordal, R. Bell, R. Alexander, L. Newquist, M. Querry, Optical properties of Al, Fe, Ti, Ta, W, Mo, at submillimeter wavelengths. Appl. Opt. 27, 1203–1209 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    D. Hite, Y. Colombe, A. Wilson, K. Brown, U. Warring, R. Jordens, J. Jost, K. McKay, D. Pappas, D. Leibfried, D. Wineland, 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. Phys. Rev. Lett. 109, 103001 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    D.J. Berkeland, M.G. Boshier, Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems. Phys. Rev. A 65, 033413 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, E. Peik, High-accuracy optical clock based on the octupole transition in \(^{171}\)Yb\(^{+}\). Phys. Rev. Lett. 108, 090801 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Frequency comparison of two high-accuracy Al\(^{+}\) optical clocks. Phys. Rev. Lett. 104, 070802 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    J. Keller, H.L. Partner, T. Burgermeister, T.E. Mehlstaubler, Precise determination of micromotion for trapped-ion optical clocks. J. Appl. Phys. 118, 104501 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    M. Harlander, M. Brownnutt, W. Hänsel, R. Blatt, Trapped-ion probing of light-induced charging effects on dielectrics. N. J. Phys. 12, 093035 (2010)CrossRefGoogle Scholar
  22. 22.
    J. Wesenberg, R. Epstein, D. Leibfried, R. Blakestad, J. Britton, J. Home, W. Itano, J. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, D. Wineland, Fluorescence during Doppler cooling of a single trapped atom. Phys. Rev. A 76, 053416 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    R.J. Epstein, S. Seidelin, D. Leibfried, J.H. Wesenberg, J.J. Bollinger, J.M. Amini, R.B. Blakestad, J.B. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Simplified motional heating rate measurements of trapped ions. Phys. Rev. A 76, 033411 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    V. Letchumanan, P. Gill, E. Riis, A.G. Sinclair, Optical Ramsey spectroscopy of a single trapped \(^{88}\)Sr\(^{+}\) ion. Phys. Rev. A 70, 033419 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    M. Doležal, P. Balling, P.B.R. Nisbet-Jones, S.A. King, J.M. Jones, H.A. Klein, P. Gill, T. Lindvall, A.E. Wallin, M. Merimaa, C. Tamm, C. Sanner, N. Huntemann, N. Scharnhorst, I.D. Leroux, P.O. Schmidt, T. Burgermeister, T.E. Mehlstäubler, E. Peik, Analysis of thermal radiation in ion traps for optical frequency standards. Metrologia 52, 842 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Crown Copyright as represented by the National Physical Laboratory 2016

Authors and Affiliations

  1. 1.National Physical LaboratoryMiddlesexUK
  2. 2.Czech Metrology InstitutePragueCzech Republic
  3. 3.School of Physics and AstronomyUniversity of BirminghamBirminghamUK
  4. 4.Clarendon LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations