Skip to main content

Advertisement

Log in

Extended emission wavelength of random dye lasers by exploiting radiative and non-radiative energy transfer

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate long-wavelength operation (>700 nm) of random dye lasers (using a methylene blue dye) with the addition of rhodamine 6G and titania, enabled by radiative and non-radiative energy transfer. The pump energy is efficiently absorbed and transferred to the acceptors, to support lasing in random dye lasers in the near infrared. The optimum random laser performance with the highest emission intensity and the lowest lasing threshold was achieved for a concentration of methylene blue as the acceptor equal to 6× the concentration of rhodamine 6G (donor). Excessive levels of methylene blue increased the lasing threshold and broadened the methylene blue emission linewidth due to dye quenching from re-absorption. This is due to competition between the donor emission and energy transfer and between absorption loss and fluorescence quenching. The radiative and non-radiative energy transfer is analyzed as a function of the acceptor concentration and pump energy density, with consideration of the spectral overlap. The dependence of the radiative and non-radiative transfer efficiency on the acceptor concentration is obtained, and the energy transfer parameters, including the radiative and non-radiative energy transfer rate constants (K R and K NR), are investigated using Stern–Volmer analysis. The analysis indicates that radiative energy transfer is the dominant energy transfer mechanism in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.V. Ambartsumyan, N.G. Basov, P.G. Kryukov, V.S. Letokhov, A laser with a nonresonant feedback. IEEE J. Quantum Electron. QE-2, 442–446 (1966)

    Article  ADS  Google Scholar 

  2. D.S. Wiersma, The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008)

    Article  Google Scholar 

  3. H. Cao, Random lasers: development, features and applications. Opt. Photonics News 16, 24–29 (2005)

    Article  ADS  Google Scholar 

  4. W.Z.W. Ismail, L. Guozhen, K. Zhang, E.M. Goldys, J.M. Dawes, Dopamine sensing and measurement using threshold and spectral measurements in random lasers. Opt. Express 24, A85–A91 (2015)

    Article  Google Scholar 

  5. J. Kitur, G. Zhu, M. Bahoura, M.A. Noginov, Dependence of the random laser behavior on the concentrations of dye and scatterers. J. Opt. 12, 024009 (2010)

    Article  ADS  Google Scholar 

  6. W.Z.W. Ismail, D. Liu, S. Clement, D. Coutts, E. Goldys, J. Dawes, Spectral and coherence signatures of threshold in random lasers. J. Opt. 16, 105008 (2014)

    Article  ADS  Google Scholar 

  7. Z. Wang, X. Shi, S. Wei, Y. Sun, Y. Wang, J. Zhou, J. Shi, D. Liu, Two-threshold silver nanowire-based random laser with different dye concentrations. Laser Phys. Lett. 11, 095002 (2014)

    Article  ADS  Google Scholar 

  8. L. Yang, G. Feng, J. Yi, K. Yao, G. Deng, S. Zhou, Effective random laser action in Rhodamine 6G solution with Al nanoparticles. Appl. Opt. 50, 1816–1821 (2011)

    Article  ADS  Google Scholar 

  9. L. Li, L. Deng, Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells. Laser Phys. 23, 085001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. R.A. Benjamin, R. Gunawidjaja, H. Eilers, Photodegradation and self-healing in a Rhodamine 6G dye and Y2O3 nanoparticle-doped polyurethane random laser. Appl. Phys. B 120, 1–12 (2015)

    ADS  Google Scholar 

  11. K. Cyprych, L. Sznitko, O. Morawski, A. Miniewicz, I. Rau, J. Mysliwiec, Spontaneous crystalization and aggregation of DCNP pyrazoline-based organic dye as a way to tailor random lasers. J. Phys. D Appl. Phys. 48, 195101 (2015)

    Article  ADS  Google Scholar 

  12. L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, Random lasing from sulforhodamine dye-doped polymer films with high surface roughness. Appl. Phys. B 108, 839–850 (2012)

    Article  ADS  Google Scholar 

  13. L. Ye, C. Hou, C. Lv, C. Zhao, Z. Yin, Y. Cui, Y. Lu, Tailoring of random lasing characteristics in dye-doped nematic liquid crystals. Appl. Phys. B 115, 303–309 (2014)

    Article  ADS  Google Scholar 

  14. W.Z.W. Ismail, T.P. Vo, E.M. Goldys, J.M. Dawes, Plasmonic enhancement of rhodamine dye random lasers. Laser Phys. 25, 085001 (2015)

    Article  ADS  Google Scholar 

  15. G.A. Kumar, N.V. Unnikrishnan, Energy transfer and optical gain studies of FDS:RhB dye mixture investigated under cw laser excitation. J. Photochem. Photobiol., A 144, 107–117 (2001)

    Article  Google Scholar 

  16. B.W. van der Meer, G. Coker, S.Y. Chen, Resonance Energy Transfer: Theory and Data (Wiley, New York, 1994), p. 177

  17. D.L. Andrews, A unified theory of radiative and radiotionless molecular energy transfer. Chem. Phys. 135, 195–201 (1989)

    Article  ADS  Google Scholar 

  18. S. Xiaoyu, Y. Wang, Z. Wang, S. Wei, Y. Sun, D. Liu, J. Zhou, Y. Zhang, J. Shi, Random lasing with a high quality factor over the whole visible range based on cascade energy transfer. Adv. Opt. Mater. 2, 88–93 (2013)

    Google Scholar 

  19. L. Cerdán, E. Enciso, V. Martín, J. Bañuelos, I. López-Arbeloa, A. Costela, I. García-Moreno, FRET assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nat. Photonics 6, 621–626 (2012)

    Article  ADS  Google Scholar 

  20. K.S. Alee, S. Barik, S. Mujumdar, Forster energy transfer induced random lasing at unconventional excitation wavelengths induced random lasing at unconventional excitation wavelengths. Appl. Phys. Lett. 103, 221112 (2013)

    Article  ADS  Google Scholar 

  21. J.F. Galisteo-López, M. Ibisate, C. Lopez, FRET-tuned resonant random lasing. J. Phys. Chem. C 118, 9665–9669 (2014)

    Article  Google Scholar 

  22. M.A. Ali, S.A. Ahmed, Comprehensive examination of radiationless energy transfer models in dyes: comparisons of theory and experiment. J. Chem. Phys. 90, 1484–1491 (1989)

    Article  ADS  Google Scholar 

  23. C. Lin, A. Dienes, Study of excitation transfer in laser dye mixtures by direct measurement of fluorescence lifetime. J. Appl. Phys. 44, 5050–5052 (1973)

    Article  ADS  Google Scholar 

  24. J.R. Lackowicz, Principles of fluorescence (Springer, New York, 1999)

    Book  Google Scholar 

  25. W. Brown, K. Mortensen, Scattering in polymeric and colloidal systems (Gordon and Breach Science Publishers, Amsterdam, 2000)

    Google Scholar 

  26. M.P. Van Albada, A. Lagendijk, Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692–2695 (1985)

    Article  ADS  Google Scholar 

  27. H. Cao, Lasing in random media. Waves Random Media 13, R1–R39 (2003)

    Article  ADS  Google Scholar 

  28. J.P. Tardivo, A.D. Giglio, C.S. de Oliveira, D.S. Gabrielli, H.C. Junqueira, D.B. Tada, D. Severino, R.D.F. Turchiello, M.S. Baptista, Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagn. Photodyn. Therapy 2, 175–191 (2005)

    Article  Google Scholar 

  29. R.F. Kubin, A.N. Fletcher, Fluorescence quantum yields of some rhodamine dyes. J. Lumin. 27, 455–462 (1983)

    Article  Google Scholar 

  30. A. Penzkofer, Y. Lu, Fluorescence quenching of Rhodamine 6G in methanol at high concentration. Chem. Phys. 103, 399–405 (1986)

    Article  ADS  Google Scholar 

  31. R. Ghazya, S.A. Zimb, M. Shaheena, F. El-Mekaweya, Experimental investigations on energy-transfer characteristics and performance of some laser dye mixtures. Opt. Laser Technol. 34, 99–105 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge funding and support from the ARC Centre of Excellence Program, Centre for Ultrahigh-bandwidth Devices for Optical Systems, ARC DP140104458, an Australia Endeavour Award, and Macquarie University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Zakiah Wan Ismail.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 658 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan Ismail, W.Z., Goldys, E.M. & Dawes, J.M. Extended emission wavelength of random dye lasers by exploiting radiative and non-radiative energy transfer. Appl. Phys. B 122, 40 (2016). https://doi.org/10.1007/s00340-016-6321-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6321-3

Keywords

Navigation