Skip to main content
Log in

Theoretical and experimental studies of a rectangular Laguerre–Gaussian-correlated Schell-model beam

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We introduce a new kind of partially coherent beam with nonconventional correlation function named rectangular Laguerre–Gaussian-correlated Schell-model (LGCSM) beam, whose degree of coherence is of rectangular symmetry, and analyze its propagation properties. We find that the rectangular LGCSM beam exhibits self-splitting properties on propagation in free space, i.e., the initial single beam spot evolves into (m + 1) × (n + 1) beam spots on propagation with m and n being the beam orders, which are totally different from that of a circular or elliptical LGCSM beam. The self-splitting properties of a rectangular LGCSM beam are also different from other self-splitting beam whose initial single beam spot only splits into two or four beam spots on propagation in free space. We also find that a focused rectangular LGCSM beam exhibits splitting and combining properties on propagation. Furthermore, we carry out experimental generation of a rectangular LGCSM beam and verify the splitting and combining properties of such beam focused by a thin lens. The rectangular LGCSM beam will be useful for manipulating multiple particles or attacking multiple targets simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. F. Gori, G. Guattari, C. Padovani, Opt. Commun. 64, 311 (1987)

    Article  ADS  Google Scholar 

  2. C. Palma, R. Borghi, G. Cincotti, Opt. Commun. 125, 113 (1996)

    Article  ADS  Google Scholar 

  3. G. Gbur, T.D. Visse, Opt. Lett. 28, 1627 (2003)

    Article  ADS  Google Scholar 

  4. S.A. Ponomarenko, J. Opt. Soc. Am. A 18, 150 (2001)

    Article  ADS  Google Scholar 

  5. G.V. Bogatyryova, C.V. Fel’de, P.V. Polyanskii, S.A. Ponomarenko, M.S. Soskin, E. Wolf, Opt. Lett. 28, 878 (2003)

    Article  ADS  Google Scholar 

  6. F. Gori, M. Santarsiero, Opt. Lett. 32, 3531 (2007)

    Article  ADS  Google Scholar 

  7. F. Gori, V.R. Sanchez, M. Santarsiero, T. Shirai, J. Opt. A: Pure Appl. Opt. 11, 085706 (2009)

    Article  ADS  Google Scholar 

  8. H. Lajunen, T. Saastamoinen, Opt. Lett. 36, 4104 (2011)

    Article  ADS  Google Scholar 

  9. Z. Tong, O. Korotkova, Opt. Lett. 37, 3240 (2012)

    Article  ADS  Google Scholar 

  10. Y. Gu, G. Gbur, Opt. Lett. 38, 1395 (2013)

    Article  ADS  Google Scholar 

  11. S. Sahin, O. Korotkova, Opt. Lett. 37, 2970 (2012)

    Article  ADS  Google Scholar 

  12. O. Korotkova, Opt. Lett. 39, 64 (2014)

    Article  ADS  Google Scholar 

  13. Y. Zhang, Y. Cai, J. Opt. 16, 075704 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. Z. Mei, O. Korotkova, Opt. Lett. 38, 91 (2013)

    Article  ADS  Google Scholar 

  15. F. Wang, X. Liu, Y. Yuan, Y. Cai, Opt. Lett. 38, 1814 (2013)

    Article  ADS  Google Scholar 

  16. Y. Chen, L. Liu, F. Wang, C. Zhao, Y. Cai, Opt. Express 22, 13975 (2014)

    Article  ADS  Google Scholar 

  17. Y. Chen, F. Wang, L. Liu, C. Zhao, Y. Cai, O. Korotkova, Phys. Rev. A 89, 013801 (2014)

    Article  ADS  Google Scholar 

  18. C. Liang, F. Wang, X. Liu, Y. Cai, O. Korotkova, Opt. Lett. 39, 769 (2014)

    Article  ADS  Google Scholar 

  19. Y. Chen, J. Gu, F. Wang, Y. Cai, Phys. Rev. A 91, 013823 (2015)

    Article  ADS  Google Scholar 

  20. J. Yu, Y. Chen, L. Liu, X. Liu, Y. Cai, Opt. Express 23, 13467 (2015)

    Article  ADS  Google Scholar 

  21. L. Ma, S.A. Ponomarenko, Opt. Lett. 39, 6656 (2014)

    Article  ADS  Google Scholar 

  22. L. Ma, S.A. Ponomarenko, Opt. Express 23, 1848 (2015)

    Article  ADS  Google Scholar 

  23. Y. Chen, F. Wang, C. Zhao, Y. Cai, Opt. Express 22, 5826 (2014)

    Article  ADS  Google Scholar 

  24. Y. Zhang, L. Liu, C. Zhao, Y. Cai, Phys. Lett. A 378, 750 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. X. Xiao, O. Korotkova, D.G. Volez, Proc. SPIE 9224, 92240N (2014)

    Article  ADS  Google Scholar 

  26. R. Chen, L. Liu, S. Zhu, G. Wu, F. Wang, Y. Cai, Opt. Express 22, 1871 (2014)

    Article  ADS  Google Scholar 

  27. S. Du, Y. Yuan, C. Liang, Y. Cai, Opt. Laser Technol. 50, 14 (2013)

    Article  ADS  Google Scholar 

  28. Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, H.T. Eyyuboğlu, Opt. Commun. 305, 57 (2013)

    Article  ADS  Google Scholar 

  29. Y. Cai, Y. Chen, F. Wang, J. Opt. Soc. Am. A 31, 2083 (2014)

    Article  ADS  Google Scholar 

  30. Y. Cai, S. Zhu, Phys. Rev. E 71, 056607 (2005)

    Article  ADS  Google Scholar 

  31. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986)

    Article  ADS  Google Scholar 

  32. D. Cassettari, B. Hessmo, R. Folman, T. Maier, J. Schmiedmayer, Phys. Rev. Lett. 85, 5483 (2000)

    Article  ADS  Google Scholar 

  33. J. Hammer, S. Thomas, P. Weber, P. Hommelhoff, Phys. Rev. Lett. 114, 254801 (2015)

    Article  ADS  Google Scholar 

  34. J. Feng, Z. Zhou, Opt. Lett. 32, 1662 (2007)

    Article  ADS  Google Scholar 

  35. L.A. Romero, F.M. Dickey, J. Opt. Soc. Am. A 24, 2280 (2007)

    Article  ADS  Google Scholar 

  36. J. Bucay, E. Roussel, J.O. Vasseur, P.A. Deymier, A.C. Hladky-Hennion, Y. Pennec, K. Muralidharan, B. Djafari-Rouhani, B. Dubus, Phys. Rev. B 79, 214305 (2009)

    Article  ADS  Google Scholar 

  37. J. Zhao, Y. Chen, Y. Feng, Appl. Phys. Lett. 92, 071114 (2008)

    Article  ADS  Google Scholar 

  38. Z. Sun, Appl. Phys. Lett. 89, 261119 (2006)

    Article  ADS  Google Scholar 

  39. Y. Chen, Y. Cai, Opt. Lett. 39, 2549 (2014)

    Article  ADS  Google Scholar 

  40. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, 1995)

    Book  Google Scholar 

  41. F. Gori, Opt. Commun. 46, 149 (1983)

    Article  ADS  Google Scholar 

  42. A.T. Friberg, R.J. Sudol, Opt. Commun. 41, 383 (1982)

    Article  ADS  Google Scholar 

  43. F. Wang, Y. Cai, J. Opt. Soc. Am. A 24, 1937 (2007)

    Article  ADS  Google Scholar 

  44. S.A. Collins, J. Opt. Soc. Am. 60, 1168 (1970)

    Article  ADS  Google Scholar 

  45. Q. Lin, Y. Cai, Opt. Lett. 27, 216 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Fund for Distinguished Young Scholar under Grant No. 11525418, the National Natural Science Foundation of China under Grant Nos. 11274005, 11474213, and 11404007, the project of the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, Anhui Provincial Natural Science Foundation of China under Grant No. 1408085QF112, and the Innovation Plan for Graduate Students in the Universities of Jiangsu Province under Grant Nos. KYLX-1218 and KYLX15-1254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangjian Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yu, J., Yuan, Y. et al. Theoretical and experimental studies of a rectangular Laguerre–Gaussian-correlated Schell-model beam. Appl. Phys. B 122, 31 (2016). https://doi.org/10.1007/s00340-016-6318-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6318-y

Keywords

Navigation