Applied Physics B

, 122:30 | Cite as

High-average-power, intense THz pulses from a LiNbO3 slab with silicon output coupler

  • M. V. Tsarev
  • D. Ehberger
  • P. BaumEmail author


Many applications of THz radiation require high fields and high repetition rates at the same time, implying substantial average power levels. Here, we report high-power Cherenkov-type THz generation in a LiNbO3 slab covered with a silicon prism outcoupler, a geometry in which the ratio between heat-removing surfaces and pump volume is naturally maximized for facilitating heat removal. At a conversion efficiency of 0.04 %, we achieve ~100 times more output power than before with such geometry. Although about 10 % of the 15 W pump power is converted to heat via multi-photon absorption effects, the peak crystal temperature increases by only 8 K. This result is due to the focus’ extreme aspect ratio of ~100, indicating the scalability of the approach to even higher average power levels. A line-shaped focus should be advantageous for removing heat in other optical conversions as well.


Pump Power LiNbO3 Pump Pulse Pump Pulse Energy ZnTe Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge funding from the European Research Council and the Munich-Centre of Advanced Photonics. M.V.T. acknowledges support under the agreement 02.B.49.21.0003 between Ministry of Science and Education of Russia and University of Nizhny Novgorod and by RFBR Grant 15-02-08328.


  1. 1.
    J.A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, J. Hebling Opt. Express 22, 20155 (2014)CrossRefGoogle Scholar
  2. 2.
    W.R. Huang, S.-W. Huang, E. Granados, K. Ravi, K.-H. Hong, L.E. Zapata, F.X. Kärtner, J. Mod. Opt. 62, 1486 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    D.E. Thompson, P.D. Coleman, IEEE Trans. Microw. Theory Tech. 22, 995 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    G. Chang, C.J. Divin, J. Yang, M.A. Musheinish, S.L. Williamson, A. Galvanauskas, T.B. Norris, Opt. Express 15, 16308 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    M.I. Bakunov, E.A. Mashkovich, M.V. Tsarev, S.D. Gorelov, Appl. Phys. Lett. 101, 151102 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    S.B. Bodrov, I.E. Ilyakov, B.V. Shishkin, A.N. Stepanov, Appl. Phys. Lett. 100, 201114 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    J.A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, J. Hebling, Opt. Lett. 37, 557 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M.C. Hoffmann, K.-L. Yeh, J. Hebling, K.A. Nelson, Opt. Express 15, 11706 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    X. Wu, S. Carbajo, K. Ravi, F. Ahr, G. Cirmi, Y. Zhou, O.D. Muecke, F.X. Kärtner, Opt. Lett. 39, 5403 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    W. Schneider, A. Ryabov, Cs. Lombosi, T. Metzger, Zs. Major, J.A. Fülöp, P. Baum, Opt. Lett. 39, 6604 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, K. Polgár, J. Appl. Phys. 97, 123505 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    H. Fattahi, H.G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C.Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X.T. Geng, G. Arisholm, M. Ciappina, V.S. Yakovlev, D.-E. Kim, A.M. Azzeer, N. Karpowicz, D. Sutter, Zs. Major, T. Metzger, F. Krausz, Optica 1, 45 (2014)CrossRefGoogle Scholar
  13. 13.
    C.J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, U. Keller, Opt. Lett. 39, 9 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, A. Tünnermann, Opt. Lett. 38, 2283 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    D. Eimerl, IEEE J. Quantum Electron. 23, 575 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    M.I. Bakunov, S.B. Bodrov, A.V. Maslov, M. Hangyo, Phys. Rev. B 76, 085346 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    A.G. Stepanov, J. Hebling, J. Kuhl, Appl. Phys. B 81, 23 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, K. Kawase, Appl. Phys. Lett. 88, 071122 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    S.B. Bodrov, M.I. Bakunov, M. Hangyo, J. Appl. Phys. 104, 093105 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    O. Gayer, Z. Sacks, E. Galun, A. Arie, Appl. Phys. B 91, 343 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    S.B. Bodrov, A.N. Stepanov, M.I. Bakunov, B.V. Shishkin, I.E. Ilyakov, R.A. Akhmedzhanov, Opt. Express 17, 1871 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Q. Chen, M. Tani, Z. Jiang, X.-C. Zhang, J. Opt. Soc. Am. B 18, 823 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    G. Gallot, D. Grischkowsky, J. Opt. Soc. Am. B 16, 1204 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    S.P. Kovalev, G.K. Kitaeva, JETP Lett. 94, 91 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Qiu, K.B. Ucer, R.T. Williams, Phys. Status Solidi (C) 2, 232 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    D. Maxein, S. Kratz, P. Reckenthaeler, J. Bückers, D. Haertle, T. Woike, K. Buse, Appl. Phys. B 92, 543 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    B. Riscob, I. Bhaumik, S. Ganesamoorthy, R. Bhatt, N. Vijayan, A.K. Karnal, M.A. Wahab, G. Bhagavannarayana, J. Appl. Crystallogr. 46, 1854 (2013)CrossRefGoogle Scholar
  28. 28.
    M.J. Prandolini, R. Riedel, M. Schulz, A. Hage, H. Höppner, F. Tavella, Opt. Express 22, 1594 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    C. Rothhardt, J. Rothhardt, A. Klenke, T. Peschel, R. Eberhardt, J. Limpert, A. Tünnermann, Opt. Mater. Express 4, 1092 (2014)CrossRefGoogle Scholar
  30. 30.
    M. Bradler, E. Riedle, Opt. Lett. 39, 2588 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Ludwig-Maximilians-Universität MünchenGarchingGermany
  3. 3.Max-Planck-Institute of Quantum OpticsGarchingGermany

Personalised recommendations