Skip to main content
Log in

An ultra-stable optical frequency standard for telecommunication purposes based upon the 5S1/2 → 5D5/2 two-photon transition in rubidium

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study, we report the development of a frequency standard for optical fiber communication applications based on a two-photon transition in rubidium at 385.2 THz. This standard kills two birds with one stone in the sense it is capable of providing us with two highly stable serviceable wavelengths at 778.1 and 1556.2 nm. In this system, we exploit the narrow line-width of a fiber laser emitting at 1556.2 nm in conjunction with an erbium-doped fiber amplifier to generate a sufficient second harmonic laser beam at 778.1 nm in a periodically polled lithium niobate waveguide mixer in order to probe and frequency-lock the laser to the 5S1/2 (F g = 3)–5D5/2 (F e = 5) hyperfine two-photon transition component in 85Rb. The metrological performance of the standard is evaluated with the aid of an optical frequency comb synthesizer. Allan variance measurement shows a stability of 4 × 10−12 at 1 s (limited by the comb stability), reaching a floor of 6.8 × 10−13 at 1000 s. After correction of all the major systematic frequency shifts including the light shift, the absolute frequency is found to be 385 285 142 374.0 (5.0) kHz. Moreover, the absolute frequencies of most of the hyperfine components of the 5S1/2–5D5/2 transition of the two naturally existing rubidium isotopes are measured using a femtosecond frequency comb synthesizer after stabilizing a laser on each component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. H. Hussein, N. Farid, O. Terra, Absolute gauge block calibration using ultra-precise optical frequency synthesizer locked to a femtosecond comb. Appl. Opt. 54(4), 622–626 (2015)

    Article  ADS  Google Scholar 

  2. J. Helmcke, Realization of the metre by frequency-stabilized lasers. Meas. Sci. Technol. 14, 1187 (2003)

    Article  ADS  Google Scholar 

  3. L. Robertsson, M. Zucco, L-S. Ma, O. Terra, F. Saraiva, S. Gentil, C. Chekirda, Y. Zakharenko, V. Fedorin, L. Mostert, Results from the CI-2004 campaign at the BIPM of the BIPM.L-K11 ongoing key comparison. Metrologia 42, 1–22 (2005)

    Article  Google Scholar 

  4. M. Matus, M. del Mar Pérez, S. Zelenika, A. Dauletbayev, C. Kuanbayev, H. Hussein, L. Robertsson, The CCL-K11 ongoing key comparison. Metrologia 49(1A Technical Supplement), 04009 (2012)

    Article  ADS  Google Scholar 

  5. O. Terra, G. Grosche, W. Ertmer, J. Friebe, T. Legero, B. Lipphardt, A. Pape, K. Predehl, E. Rasel, M. Riedmann, U. Sterr, T. Wübbena, H. Schnatz, Telecommunication fiber link for the remote characterization of a magnesium optical frequency standard. Proc. SPIE 7431, 74310B (2009)

    Article  Google Scholar 

  6. A.J. Olson, E.J. Carlson, and S.K. Mayer, Two-photon spectroscopy of rubidium using a grating-feedback diode laser. Am. J. Phys. 74(3), 218–223 (2006)

    Article  ADS  Google Scholar 

  7. R.E. Ryan, L.A. Westling, H.J. Metcalf, Two-photon spectroscopy in rubidium with a diode laser. J. Opt. Soc. Am. B 10, 1643–1648 (1993)

    Article  ADS  Google Scholar 

  8. R. Felder, D. Touhari, O. Acef, L. Hilico, J.-J. Zondy, A. Clairon, B. de Beauvoir, F. Biraben, L. Julien, F. Nez, Y. Millerioux, Performance of a GaAlAs laser diode stabilized on a hyperfine component of two-photon transitions in rubidium at 778 nm. SPIE 2378, 52–57 (1995)

    ADS  Google Scholar 

  9. L. Hilico, R. Felder, D. Touahri, O. Acef, A. Clairon, F. Biraben, Metrological features of the rubidium two-photon standards of the BNM-LPTF and Kastler Brossel Laboratories. Eur. Phys. J. AP 4, 219 (1998)

    Article  ADS  Google Scholar 

  10. F. Biraben, M. Inguscio, F. Marin, F. Pavone, Doppler-free detection of the 5S1/2–5D5/2 two-photon transitions in 87Rb using a narrow-band AlGaAs laser. Laser Phys. 4(2), 349–351 (1994)

    Google Scholar 

  11. T.T. Grove, V. Sanchez-Villicana, B.C. Duncan, S. Maleki, P.L. Gould, Two-photon two-color diode laser spectroscopy of the Rb 5D5/2 state. Phys. Scr. 52, 271–276 (1995)

    Article  ADS  Google Scholar 

  12. M. Poulin, C. Latrasse, D. Touahri, M. Tetu, Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms. Opt. Commun. 207, 233–242 (2002)

    Article  ADS  Google Scholar 

  13. J.P. Burger, P. Jivan, C. Matthee, R. Kritzingerb, H. Hussein and O. Terra, Theoretical analysis and system design of two-photon based optical frequency standards. In Proceedings of SPIE Vol. 9257 925705-1 (2014)

  14. M. de Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, High-frequency-stability laser at 1.5 mm using Doppler-free molecular lines. Opt. Lett. 20(6), 572–574 (1995)

    Article  ADS  Google Scholar 

  15. T.J. Quinn, Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001(. Metrologia 40, 103–133 (2003)

    Article  ADS  Google Scholar 

  16. R. Paschotta, Photonics applied: frequency combs: optical frequency combs forge precise optical clocks and more. Article for Laser Focus World (trade magazine). http://www.optoiq.com. 1 January 2011

  17. F. Nez, F. Biraben, R. Felder, Y. Millerioux, Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium. Opt. Commun. 102, 432–438 (1993)

    Article  ADS  Google Scholar 

  18. J.M. Hollas, Modern Spectroscopy, 4th edn. (Wiley, Chichester, 2004), p. 371. ISBN: 978-0-470-84416-8

  19. W. Demtröder, Laser Spectroscopy, Vol. 2: Experimental Techniques, 4th edn. Springer, Berlin, (2008), pp. 118–129

  20. M-S. Ko, Rubidium 5S1/2 → 7S1/2 two-photon transition, M.Sc. thesis, National Tsing Hua University, (2004)

  21. L.S. Ma, M. Zueco, S. Picard, L. Robertsson, R.S. Windeier, A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements. IEEE J. Sel. Top. Quantum Electron. 9, 1066 (2003)

    Article  Google Scholar 

  22. X. Chen, M. Han, Y. Zhu, B. Dong, and A. Wang, Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow laser linewidth measurement. Appl. Opt. 45(29), 7712–7717 (2006)

    Article  ADS  Google Scholar 

  23. P. V. Kirankumar and M. V. Suryanarayana, Precision two-photon spectroscopy of alkali elements. PRAMANA J. Phys. 83(2), 189–219 (2014)

    Article  Google Scholar 

  24. B.P. Stoicheff, E. Weinberger, Can. J. Phys. 57, 2143 (1979)

    Article  ADS  Google Scholar 

  25. BIPM documents, RUBIDIUM (λ ≈ 778 nm) MEP (2005)

  26. D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, F. Nez, Frequency measurement of the 5S1/2(F = 3)–5D5/2(F = 5) two-photon transition in rubidium. Opt. Commun. 133 47 I-478 (1997)

  27. J.L. Hall, S.T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the Egyptian Ministry of Scientific Research as well as the Science and Technology Development Fund (STDF) for supporting and funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Hussein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terra, O., Hussein, H. An ultra-stable optical frequency standard for telecommunication purposes based upon the 5S1/2 → 5D5/2 two-photon transition in rubidium. Appl. Phys. B 122, 27 (2016). https://doi.org/10.1007/s00340-015-6309-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6309-4

Keywords

Navigation