Skip to main content
Log in

Broadband photon pair generation at 3ω/2

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We experimentally demonstrate a method for creating broad bandwidth photon pairs in the visible spectral region, centered at a frequency that is higher than that of the initial pump source. Spontaneous down conversion of a narrowband 1053 nm pulsed Nd:YLF laser is followed by highly efficient upconversion in adiabatic nonlinear frequency-conversion process. Photon pairs are generated from 693 to 708 nm, and the complete conversion process occurs within a single monolithic 5-cm-long stoichiometric lithium tantalate nonlinear crystal. We have characterized the dependence of this structure with respect to pump intensity and crystal temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Boyd, Nonlinear Optics, 3rd edn. (Academic Press Elsevier Inc., Burlington, USA, 2007)

    Google Scholar 

  2. P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, Y. Shih, New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 73, 4337–4342 (1995)

    Article  ADS  Google Scholar 

  3. S.E. Harris, M.K. Oshman, R.L. Byer, Observation of tunable optical parametric fluorescence. Phys. Rev. Lett. 18, 732–734 (1967)

    Article  ADS  Google Scholar 

  4. J.-Y. Zhang, J.Y. Huang, Y.R. Shen, Optical Parametric Generation and Amplification (Harwood Academic, Amsterdam, 1995)

    Google Scholar 

  5. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, H. Zbinden, A photonic quantum information interface. Nature 37, 116–120 (2005)

    Article  ADS  Google Scholar 

  6. G. Imeshev, M.M. Fejer, A. Galvanauskas, D. Harter, Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings. JOSA B 18, 534–539 (2001)

    Article  ADS  Google Scholar 

  7. L. Allen, J.H. Eberly, Optical Resonance and Two Level Systems (Dover, New York, 1975)

    Google Scholar 

  8. N.V. Vitanov, T. Halfmann, B.W. Shore, K. Bergmann, Laser-induced population transfer by adiabatic passage techniques. Ann. Rev. Phys. Chem. 52, 763–809 (2001)

    Article  ADS  Google Scholar 

  9. H. Suchowski, D. Oron, A. Arie, Y. Silberberg, Geometrical representation of sum frequency generation and adiabatic frequency conversion. Phys. Rev. A 78, 063821 (2008)

    Article  ADS  Google Scholar 

  10. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, Y. Silberberg, Robust efficient sum frequency conversion. Opt. Express 17, 12732–12741 (2009)

    Article  ADS  Google Scholar 

  11. C.R. Phillips, M.M. Fejer, Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings. Opt. Lett. 35, 3093–3095 (2010)

    Article  ADS  Google Scholar 

  12. C. Heese, C.R. Phillips, L. Gallmann, M.M. Fejer, U. Keller, Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3. Opt. Lett. 35, 2340–2342 (2010)

    Article  ADS  Google Scholar 

  13. G. Porat, Y. Silberberg, A. Arie, H. Suchowski, Two-photon frequency conversion. Opt. Express 20(4), 3613–3619 (2012)

    Article  ADS  Google Scholar 

  14. G. Porat, A. Arie, Efficient two-process frequency conversion through a dark intermediate state. J. Opt. Sci. Am. B 29(10), 2901–2909 (2012)

    Article  ADS  Google Scholar 

  15. A.A. Rangelov, N.V. Vitanov, Broadband sum-frequency generation using cascaded processes via chirped quasi-phase-matching. Phys. Rev. A 85, 045804 (2012)

    Article  ADS  Google Scholar 

  16. O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, R. Morandotti, Complete energy conversion by autoresonant three-wave mixing in nonuniform media. Opt. Express 21(2), 1623–1632 (2013)

    Article  ADS  Google Scholar 

  17. H. Suchowski, G. Porat, A. Arie, Adiabatic processes in frequency conversion. Laser Photonics Rev. 8(3), 333–367 (2014)

    Article  Google Scholar 

  18. H. Suchowski, B.D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, Y. Silberberg, Adiabatic frequency conversion of ultrafast pulses. Appl. Phys. B 105, 697–702 (2011)

    Article  ADS  Google Scholar 

  19. B. Dayan, A. Pe’er, A.A. Friesem, Y. Silberberg, Nonlinear interactions with an ultrahigh flux of broadband entangled photons. Phys. Rev. Lett. 94, 043602 (2005)

    Article  ADS  Google Scholar 

  20. J.G. Rarity, J. Fulconis, J. Duligall, W.J. Wadsworth, PStJ Russell, Photonic crystal fiber source of correlated photon pairs. Opt. Express 13(2), 534–544 (2005)

    Article  ADS  Google Scholar 

  21. M.B. Aguero, A.A. Hnilo, M.G. Kovalsky, Measuring the entanglement of photons produced by a nanosecond pulsed source. J. Opt. Sci. Am. B 31(12), 3088–3096 (2014)

    Article  ADS  Google Scholar 

  22. G. Porat, H. Suchowski, Y. Silberberg, A. Arie, Robust up-converted optical parametric oscillator with intracavity adiabatic sum frequency generation. Opt. Lett. 35, 1590–1592 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Israel Science Foundation through Grants 1310/13, the ERC grant QUAMI, the ERC Grant MIRAGE 20-15 and the Crown Photonics Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Suchowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suchowski, H., Bruner, B.D., Israel, Y. et al. Broadband photon pair generation at 3ω/2. Appl. Phys. B 122, 25 (2016). https://doi.org/10.1007/s00340-015-6304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-015-6304-9

Keywords

Navigation