Applied Physics B

, 122:51 | Cite as

Entanglement distillation using the exchange interaction

  • Adrian Auer
  • René Schwonnek
  • Christian Schoder
  • Lars Dammeier
  • Reinhard F. Werner
  • Guido Burkard
Article
Part of the following topical collections:
  1. Quantum Repeaters: From Components to Strategies

Abstract

A key ingredient of quantum repeaters is entanglement distillation, i.e., the generation of high-fidelity entangled qubits from a larger set of pairs with lower fidelity. Here, we present entanglement distillation protocols based on qubit couplings that originate from exchange interaction. First, we make use of asymmetric bilateral two-qubit operations generated from anisotropic exchange interaction and show how to distill entanglement using two input pairs. We furthermore consider the case of three input pairs coupled through isotropic exchange. Here, we characterize a set of protocols which are optimizing the trade-off between the fidelity increase and the probability of a successful run.

References

  1. 1.
    H.J. Kimble, Nature 453, 1023 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    W. Dür, H.-J. Briegel, J.I. Cirac, P. Zoller, Phys. Rev. A 59, 169 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S.J. Dewhurst, N. Gisin, C.Y. Hu, F. Jelezko, S. Kröll, J.H. Müller, J. Nunn, E.S. Polzik, J.G. Rarity, H. De Riedmatten, W. Rosenfeld, A.J. Shields, N. Sköld, R.M. Stevenson, R. Thew, I.A. Walmsley, M.C. Weber, H. Weinfurter, J. Wrachtrup, R.J. Young, Eur. Phys. J. D 58, 1 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    C. Kloeffel, D. Loss, Annu. Rev. Condens. Matter Phys. 4, 51 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    V. Dobrovitski, G. Fuchs, A. Falk, C. Santori, D. Awschalom, Annu. Rev. Condens. Matter Phys. 4, 23 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.A. Smolin, W.K. Wootters, Phys. Rev. Lett. 76, 722 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    K.C. Nowack, F.H.L. Koppens, Y.V. Nazarov, L.M.K. Vandersypen, Science 318, 1430 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 309, 2180 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    G. Burkard, D. Loss, D.P. DiVincenzo, Phys. Rev. B 59, 2070 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    A. Auer, G. Burkard, Phys. Rev. A 90, 022320 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    R.F. Werner, Phys. Rev. A 40, 4277 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    T. Tanamoto, K. Maruyama, Y.-X. Liu, X. Hu, F. Nori, Phys. Rev. A 78, 062313 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    K. Maruyama, F. Nori, Phys. Rev. A 78, 022312 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    D. Gonţa, P. van Loock, Phys. Rev. A 84, 042303 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    D. Gonţa, P. van Loock, Phys. Rev. A 86, 052312 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J.M. Taylor, W. Dür, P. Zoller, A. Yacoby, C.M. Marcus, M.D. Lukin, Phys. Rev. Lett. 94, 236803 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    J.-W. Pan, C. Simon, C. Brukner, A. Zeilinger, Nature 410, 1067 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    A. Imamoğlu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Phys. Rev. Lett. 83, 4204 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961)Google Scholar
  27. 27.
    P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M.L. Markham, D.J. Twitchen, S. Pezzagna, J. Meijer, J. Twamley, F. Jelezko, J. Wrachtrup, Nat. Phys. 6, 249 (2010)CrossRefGoogle Scholar
  28. 28.
    T. Eggeling, R.F. Werner, Phys. Rev. A 63, 042111 (2001)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    G. Dirr, U. Helmke, GAMM-Mitteilungen 31, 59 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Brockett R. (1973) Geometric Methods in System Theory, volume 3 of NATO Advanced Study Institutes Series ed by D. Mayne, R. Brockett, (Springer, The Netherlands), p. 43–82Google Scholar
  31. 31.
    A. Chinchuluun, P.M. Pardalos, A. Migdalas, L. Pitsoulis (eds.), Pareto Optimality Game Theory And Equilibria, (Springer, New York, 2008)Google Scholar
  32. 32.
    I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958)ADSCrossRefGoogle Scholar
  33. 33.
    T. Moriya, Phys. Rev. 120, 91 (1960)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Adrian Auer
    • 1
  • René Schwonnek
    • 2
  • Christian Schoder
    • 1
  • Lars Dammeier
    • 2
  • Reinhard F. Werner
    • 2
  • Guido Burkard
    • 1
  1. 1.Department of PhysicsUniversity of KonstanzKonstanzGermany
  2. 2.Institut für Theoretische PhysikLeibniz UniversitätHannoverGermany

Personalised recommendations