Abstract
We demonstrate the multiplexing of a weak coherent and a quantum state of light in a single telecommunication fiber. For this purpose, we make use of spontaneous parametric down conversion and quantum frequency conversion to generate photon pairs at 854 nm and the telecom O-band. The herald photon at 854 nm triggers a telecom C-band laser pulse. The telecom single photon (O-band) and the laser pulse (C-band) are combined and coupled to a standard telecom fiber. Low-background time correlation between the weak coherent and quantum signal behind the fiber shows successful multiplexing.
This is a preview of subscription content, access via your institution.



References
H. Shibata, T. Honjo, K. Shimizu, Quantum key distribution over a 72 dB channel loss using ultralow dark count superconducting single-photon detectors. Opt. Lett. 39, 5078–5081 (2014)
T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, H. Takesue, Entanglement distribution over 300 km of fiber. Opt. Express 21, 23241–23249 (2013)
H. Takesue, S. Nam, Q. Zhang, R.H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photonics 1, 343–348 (2007)
M. Peev, C. Pacher, R. Alleaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J.F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legre, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A.W. Sharpe, A.J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R.T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z.L. Yuan, H. Zbinden, A. Zeilinger, The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)
M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J.F. Dynes, A.R. Dixon, A.W. Sharpe, Z.L. Yuan, A.J. Shields, S. Uchikoga, M. Legre, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, A. Zeilinger, Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19, 10387–10409 (2011)
A. Rubenok, J.A. Slater, P. Chan, I. Lucio-Martinez, W. Tittel, Real-world two-photon interference and proof-of-principle quantum key distribution Immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013)
W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Violation of bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998)
I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, N. Gisin, Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)
C.H. Bennett, G. Brassard, in International Conference on Computers, Systems and Signal Processing (Bangalore, 1984), pp. 175–179
P.D. Townsend, Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing. Electr. Lett. 33, 188–190 (1997)
T.E. Chapuran, P. Toliver, N.A. Peters, J. Jackel, M.S. Goodman, R.J. Runser, S.R. McNown, N. Dallmann, R.J. Hughes, K.P. McCabe, J.E. Nordholt, C.G. Peterson, K.T. Tyagi, L. Mercer, H. Dardy, Optical networking for quantum key distribution and quantum communications. New J. Phys. 11, 105001 (2009)
M.A. Hall, J.B. Altepeter, P. Kumar, Drop-in compatible entanglement for optical-fiber networks. Opt. Express 17, 14558–14566 (2009)
S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, G. Franzl, Perspectives and limitations of QKD integration in metropolitan area networks. Opt. Express 23, 10359–10373 (2015)
International Telecommunication Union, Spectral grids for WDM applications: DWDM frequency grid, ITU-T G.694.1, version 02/2012
Z.Y. Ou, Efficient conversion between photons and between photon and atom by stimulated emission. Phys. Rev. A 78, 023819 (2008)
S. Zaske, A. Lenhard, C.A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)
S. Blum, G.A. Olivares-Renteria, C. Ottaviani, C. Becher, G. Morigi, Single-photon frequency conversion in nonlinear crystals. Phys. Rev. A 88, 053807 (2013)
M. Bock, A. Lenhard, C. Becher, A highly efficient heralded single photon source for telecom wavelengths based on a PPLN ridge waveguide (2016) (Manuscript in preparation)
Corning SMF-28e+ Optical Fiber with NexCor Technology—Product Information, Document PI1463, December 2007, Corning Inc
C. Ho, A. Lamas-Linares, C. Kurtsiefer, Clock synchronization by remote detection of correlated photon pairs. New J. Phys. 11, 045011 (2009)
N. Piro, A. Haase, M.W. Mitchell, J. Eschner, An entangled photon source for resonant single-photon-single-atom interaction. J. Phys. B At. Mol. Opt. Phys. 42, 114002 (2009)
N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, J. Eschner, Heralded single-photon absorption by a single atom. Nat. Phys. 7, 17–20 (2010)
Acknowledgments
The work was funded by the German Federal Ministry of Science and Education (BMBF) within the projects “Q.com-Q” (Contract No. 16KIS0127). J. Brito acknowledges support by CONICYT.
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper is part of the topical collection “Quantum Repeaters: From Components to Strategies” guest edited by Manfred Bayer, Christoph Becher and Peter van Loock.
Rights and permissions
About this article
Cite this article
Lenhard, A., Brito, J., Kucera, S. et al. Single telecom photon heralding by wavelength multiplexing in an optical fiber. Appl. Phys. B 122, 20 (2016). https://doi.org/10.1007/s00340-015-6284-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00340-015-6284-9
Keywords
- Laser Pulse
- Fiber Bragg Grating
- Quantum Channel
- Wavelength Division Multiplexer
- Lithium Niobate