Coherent photocurrent spectroscopy of single InP-based quantum dots in the telecom band at 1.5 µm


In this work we study the resonant and coherent properties of single InP-based InAs quantum dots, which show an optical emission in the telecom C-band and L-band. High-resolution resonant photocurrent spectroscopy on p–i–n devices reveals narrow linewidths and fully resolved fine structure splittings. We observe Lorentzian line shapes, which allow for the extraction of dephasing times as a function of the applied bias voltage. Coherent ps laser excitation results in pronounced Rabi rotations with increasing pulse area. For π-pulse excitation, we obtain more than 93 % of the theoretically expected photocurrent amplitude. Our results also demonstrate that such state-of-the-art InP-based quantum dots for the telecom band exhibit promising key parameters comparable to well-established InAs/GaAs counterparts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, Lidong Zhang, E. Hu, A. Imamoglu, Science 290, 2282 (2000)

    ADS  Article  Google Scholar 

  2. 2.

    T.H. Stievater, X. Li, D.G. Steel, D. Gammon, D.S. Katzer, D. Park, C. Piermarocchi, L.J. Sham, Phys. Rev. Lett. 87, 133603 (2001)

    ADS  Article  Google Scholar 

  3. 3.

    A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, G. Abstreiter, Nature 418, 612 (2002)

    ADS  Article  Google Scholar 

  4. 4.

    S. Stufler, P. Ester, A. Zrenner, M. Bichler, Phys. Rev. Lett. 96, 37402 (2006)

    ADS  Article  Google Scholar 

  5. 5.

    H.-J. Briegel, W. Dür, J. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932 (1998)

    ADS  Article  Google Scholar 

  6. 6.

    R. Trotta, J. Martín-Sánchez, I. Daruka, C. Ortix, A. Rastelli, Phys. Rev. Lett. 114, 150502 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    Y.M. He, Y. He, Y.J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.Y. Lu, J.-W. Pan, Nat. Nanotechnol. 8, 213 (2013)

    ADS  Article  Google Scholar 

  8. 8.

    M. Müller, S. Bounouar, K.D. Jöns, M. Glässl, P. Michler, Nat. Photon 8, 224 (2014)

    ADS  Article  Google Scholar 

  9. 9.

    A. Muller, E.B. Flagg, P. Bianucci, X.Y. Wang, D.G. Deppe, W. Ma, J. Zhang, G.J. Salamo, M. Xiao, C.K. Shih, Phys. Rev. Lett. 99, 187402 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    S. Zaske, A. Lenhard, C.A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.M. Schulz, M. Jetter, P. Michler, C. Becher, Phys. Rev. Lett. 109, 147404 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    T. Miyazawa, T. Nakaoka, K. Watanabe, N. Kumagai, N. Yokoyama, Y. Arakawa, Jpn. J. Appl. Phys 49, 06GJ09 (2010)

    Google Scholar 

  12. 12.

    M. Paul, J. Kettler, K. Zeuner, C. Clausen, M. Jetter, P. Michler, Appl. Phys. Lett. 106, 122105 (2015)

    ADS  Article  Google Scholar 

  13. 13.

    M.B. Ward, T. Farrow, P. See, Z.L. Yuan, O.Z. Karimov, A.J. Bennett, A.J. Shields, P. Atkinson, K. Cooper, D.A. Ritchie, Appl. Phys. Lett. 90, 63512 (2007)

    Article  Google Scholar 

  14. 14.

    Ł. Dusanowski, M. Syperek, W. Rudno-Rudziński, P. Mrowiński, G. Sȩk, J. Misiewicz, A. Somers, J.P. Reithmaier, S. Höfling, A. Forchel, Appl. Phys. Lett. 103, 253113 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    M.E. Reimer, D. Dalacu, J. Lapointe, P.J. Poole, D. Kim, G.C. Aers, W.R. McKinnon, R.L. Williams, Appl. Phys. Lett. 94, 011108 (2009)

    ADS  Article  Google Scholar 

  16. 16.

    M.D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P.J. van Veldhoven, R. Nötzel, M. Notomi, Sci. Rep. 2, 321 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    M. Benyoucef, M. Yacob, J.P. Reithmaier, J. Kettler, P. Michler, Appl. Phys. Lett. 103, 162101 (2013)

    ADS  Article  Google Scholar 

  18. 18.

    T. Miyazawa, S. Okumura, S. Hirose, K. Takemoto, M. Takatsu, T. Usuki, N. Yokoyama, Y. Arakawa, Jpn. J. Appl. Phys. 47, 2880 (2008)

    ADS  Article  Google Scholar 

  19. 19.

    M. Yacob, J.P. Reithmaier, M. Benyoucef, Appl. Phys. Lett. 104, 22113 (2014)

    Article  Google Scholar 

  20. 20.

    M. Ediger, G. Bester, A. Badolato, P.M. Petroff, K. Karrai, A. Zunger, R.J. Warburton, Nat. Phys. 3, 774 (2007)

    Article  Google Scholar 

  21. 21.

    M. Bayer, G. Ortner, O. Stern, A. Kuther, A.A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T.L. Reinecke, S.N. Walck, J.P. Reithmaier, F. Klopf, F. Schäfer, Phys. Rev. B 65, 195315 (2002)

    ADS  Article  Google Scholar 

  22. 22.

    S. Stufler, P. Ester, A. Zrenner, M. Bichler, Appl. Phys. Lett. 85, 4202 (2004)

    ADS  Article  Google Scholar 

Download references


We would like to acknowledge financial support from the German Federal Ministry of Education and Research (BMBF) via the projects 16KIS0112 and 16KIS0114.

Author information



Corresponding author

Correspondence to S. Gordon.

Additional information

This paper is part of the topical collection “Quantum Repeaters: From Components to Strategies” guest edited by Manfred Bayer, Christoph Becher and Peter van Loock.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gordon, S., Yacob, M., Reithmaier, J.P. et al. Coherent photocurrent spectroscopy of single InP-based quantum dots in the telecom band at 1.5 µm. Appl. Phys. B 122, 37 (2016).

Download citation


  • Bias Voltage
  • Optical Parametric Oscillator
  • Molecular Beam Epitaxy Growth
  • Internal Electric Field
  • Dephasing Time