Applied Physics B

, 122:36 | Cite as

Doubly heralded single-photon absorption by a single atom

  • J. Brito
  • S. Kucera
  • P. Eich
  • P. Müller
  • J. EschnerEmail author
Part of the following topical collections:
  1. Quantum Repeaters: From Components to Strategies


We report on a single-photon-to-single-atom interface, where a single photon generated by spontaneous parametric down-conversion (SPDC) is absorbed by a single trapped ion. The photon is heralded by its time-correlated partner generated in the SPDC process, while the absorption event is heralded by a single photon emitted in its course. Coincidence detection marks doubly heralded absorption, enabling photon-to-atom quantum state transfer (Kurz et al. in Nat Commun 5:5527, 2014; Müller and Eschner in Appl Phys B 114:303, 2013). Background in the coincidence measurement is strongly suppressed by a new method that discriminates real absorption events from dark-count-induced coincidences.


Single Atom Photon Pair Quantum Network Dark Count Quantum State Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge support by the BMBF (Verbundprojekt, CHIST-ERA project QScale), the German Scholars Organization/Alfried Krupp von Bohlen und Halbach-Stiftung, and the ESF (IOTA COST Action). J. Brito acknowledges support by CONICYT.


  1. 1.
    H.J. Kimble, The quantum internet. Nature 453, 1023 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, G. Rempe, An elementary quantum network of single atoms in optical cavities. Nature 484, 195 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    A.D. Boozer, A. Boca, R. Miller, T.E. Northup, H. Kimble, Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    M. Schug, J. Huwer, C. Kurz, P. Müller, J. Eschner, Heralded photonic interaction between distant single ions. Phys. Rev. Lett. 11, 213603 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    C. Langer et al., Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    A. Stute, B. Casabone, P. Schindler, T. Monz, P.O. Schmidt, B. Brandsttter, T.E. Northup, R. Blatt, Tunable ion-photon entanglement in an optical cavity. Nature 485, 482 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    P. Schindler, D. Nigg, T. Monz, J.T. Barreiro, E. Martinez, S.X. Wang, S. Quint, M.F. Brandl, V. Nebendahl, C.F. Roos, M. Chwalla, M. Hennrich, R. Blatt, A quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    D. Hucul, I.V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S.M. Clark, C. Monroe, Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Moehring, P. Maunz, S. Olmschenk, K.C. Younge, D.N. Matsukevich, L.M. Duan, C. Monroe, Entanglement of single-atom quantum bits at a distance. Nature 44910, 68 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    L.M. Duan, C. Monroe, Quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller, J. Eschner, Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer. Nat. Commun. 5, 5527 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    B. Weber, H.P. Specht, T. Müller, J. Bochmann, M. Mücke, D.L. Moehring, G. Rempe, Photon–photon entanglement with a single trapped atom. Phys. Rev. Lett. 102, 030501 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    N. Kalb, A. Reiserer, S. Ritter, G. Rempe, Heralded storage of a photonic quantum bit in a single atom. Phys. Rev. Lett. 114, 220501 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    N. Piro, F. Rohde, C. Schuck, M. Almendros, J. Huwer, J. Ghosh, A. Haase, M. Hennrich, F. Dubin, J. Eschner, Heralded single-photon absorption by a single atom. Nat. Phys. 7, 17 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Huwer, J. Ghosh, N. Piro, M. Schug, F. Dubin, J. Eschner, Photon entanglement detection by a single atom. New J. Phys. 15, 025033 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    P. Müller, J. Eschner, Single calcium-40 ion as quantum memory for photon polarization: a case study. Appl. Phys. B 114, 303 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Lloyd, M.S. Shahriar, J.H. Shapiro, P.R. Hemmer, Long distance, unconditional teleportation of atomic states via complete bell state measurements. Phys. Rev. Lett. 87, 167903 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    N. Sangouard, J.-D. Bancal, P. Müller, J. Ghosh, J. Eschner, Heralded mapping of photonic entanglement into single atoms in free space: proposal for a loophole-free bell test. New J. Phys 15, 085004 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    A. Haase, N. Piro, J. Eschner, M.W. Mitchell, Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction. Opt. Lett. 34(1), 55 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    N. Piro, A. Haase, M. Mitchell, J. Eschner, An entangled photon source for resonant single-photon-single-atom interaction. J. Phys. B At. Mol. Opt. Phys. 42, 114002 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    F. Rohde, M. Almendros, C. Schuck, J. Huwer, M. Hennrich, J. Eschner, A diode laser stabilization scheme for 40ca+ single-ion spectroscopy. J. Phys. B At. Mol. Opt. Phys. 43, 115401 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    A. Lenhard, M. Bock, S. Kucera, J. Brito, P. Eich, P. Müller, C. Becher, J. Eschner. Telecom-heralded single photon absorption by a single atom (2015). Arxiv:1504.08303Google Scholar
  24. 24.
    S. Zaske, A. Lenhard, C.A. Kessler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. Brito
    • 1
  • S. Kucera
    • 1
  • P. Eich
    • 1
  • P. Müller
    • 1
  • J. Eschner
    • 1
    Email author
  1. 1.ExperimentalphysikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations