Skip to main content
Log in

Efficient X-ray emission from laser-irradiated low-density lead target: a substitute for gold in hohlraum design

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Numerical experiments are carried out to calculate continuum emissivity and opacity of plasmas produced from laser-irradiated Au and Pb targets as hohlraum wall materials. Targets are considered to be solid or porous with different initial densities. Simulation results show a good agreement compared with the measured data. The results show that under identical conditions, X-ray emission is higher for Au plasma; however, by decreasing initial densities, X-ray yield enhancement is greater for Pb plasma. By using a Pb target with initial density of about 1.14 g cm−3 instead of solid Au target, the same X-ray yield even more can be obtained. Calculations also show that in the conditions of solid density targets, Pb plasma offers a little lower opacity in soft X-ray region. Decreasing initial density of Pb causes its opacity to increase and get closer to the opacity of solid Au which in turn reduces energy losses in hohlraum wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Laser Inertial Fusion Energy.

References

  1. J.H. Gardner, A.J. Schmitt, J.P. Dahlburg, C.J. Pawley, S.E. Bodner, S.P. Obenschain, V. Serlin, Y. Aglitskiy, Phys. Plasmas 5, 1935 (1998)

    Article  ADS  Google Scholar 

  2. S.H. Glenzer, B.J. MacGowan, P. Miche, N.B. Meezan, L.J. Suter, S.N. Dixit, J.L. Kline, G.A. Kyrala, D.K. Bradley, D.A. Callahan, E.L. Dewald, L. Divol, E. Dzenitis, M.J. Edwards, A.V. Hamza, C.A. Haynam, D.E. Hinkel, D.H. Kalantar, J.D. Kilkenny, O.L. Landen, J.D. Lindl, S. LePape, J.D. Moody, A. Nikroo, T. Parham, M.B. Schneider, R.P.J. Town, P. Wegner, K. Widmann, P. Whitman, B.K.F. Young, B. Van Wonterghem, L.J. Atherton, E.I. Moses, Science 327, 1228 (2010)

    Article  ADS  Google Scholar 

  3. J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, S.W. Haan, R.L. Kauffman, O.L. Landen, L.J. Suter, Phys. Plasmas 11, 339 (2004)

    Article  ADS  Google Scholar 

  4. M. Cable, S.P. Hatchett, J.A. Caird, J.D. Kilkenny, H.N. Kornblum, S.M. Lane, C. Laumann, R.A. Lerche, T.J. Murphy, J. Murray, M.B. Nelson, D.W. Phillion, H. Powell, D.B. Ress, Phys. Rev. Lett. 73, 2316 (1994)

    Article  ADS  Google Scholar 

  5. J.D. Lindl, Inertial Confinement Fusion (Springer, New York, 1998)

    Google Scholar 

  6. J.D. Lindl, Phys. Plasmas 2, 3933 (1995)

    Article  ADS  Google Scholar 

  7. E. Dattolo, L. Suter, M.C. Monteil, J.P. Jadaud, N. Dague, S. Glenzer, R. Turner, D. Juraszek, B. Lasinski, C. Decker, O. Landen, B. MacGowan, Phys. Plasmas 8, 260 (2001)

    Article  ADS  Google Scholar 

  8. N.D. Delamater, E.L. Lindman, G.R. Magelssen, B.H. Failor, T.J. Murphy, A.A. Hauer, P. Gobby, J.B. Moore, V. Gomez, K. Gifford, R.L. Kauffman, O.L. Landen, B.A. Hammel, G. Glendinning, L.V. Powers, L.J. Suter, S. Dixit, R.R. Peterson, A.L. Richard, Phys. Plasmas 7, 1609 (2000)

    Article  ADS  Google Scholar 

  9. S.G. Glendinning, S.V. Weber, P. Bell, L.B. DaSilva, S.N. Dixit, M.A. Henesian, D.R. Kania, J.D. Kilkenny, H.T. Powell, R.J. Wallace, P.J. Wegner, J.P. Knauer, C.P. Verdon, Phys. Rev. Lett. 69, 1201 (1992)

    Article  ADS  Google Scholar 

  10. S.H. Glenzer, L.J. Suter, R.L. Berger, K.G. Estabrook, B.A. Hammel, R.L. Kauffman, R.K. Kirkwood, B.J. MacGowan, J.D. Moody, J.E. Rothenberg, R.E. Turner, Phys. Plasmas 7, 2585 (2000)

    Article  ADS  Google Scholar 

  11. S.W. Haan, S.M. Pollaine, J.D. Lindl, L.J. Suter, R.L. Berger, L.V. Powers, W.E. Alley, P.A. Amendt, J.A. Futterman, W.K. Levedahl, M.D. Rosen, D.P. Rowley, R.A. Sacks, A.I. Shestakov, G.L. Strobel, M. Tabak, S.V. Weber, G.B. Zimmerman, W.J. Krauser, D.C. Wilson, S.V. Coggeshall, D.B. Harris, N.M. Hoffman, B.H. Wilde, Phys. Plasmas 2, 2480 (1995)

    Article  ADS  Google Scholar 

  12. R.L. Kauffman, L.V. Powers, S.N. Dixit, S.G. Glendinning, S.H. Glenzer, R.K. Kirkwood, O.L. Landen, B.J. MacGowan, J.D. Moody, T.J. Orzechowski, D.M. Pennington, G.F. Stone, L.J. Suter, R.E. Turner, T.L. Weiland, A.L. Richard, M.A. Blain, Phys. Plasmas 5, 1927 (1998)

    Article  ADS  Google Scholar 

  13. O. L. Landen, P. A. Amendt, R. E. Turner, S. G. Glendinning, D. H. Kalantar, C. D. Decker, L. J. Suter, M. D. Cable, R. Wallace, B. A. Hammel, J. D. Kilkenny, D. Bradley, F. J. Marshall, R. Keck, R. Kremens, W. Seka, J. Schnittman, R. Craxton, C. P. Verdon, J. Soures, R. McCrory, T. J. Murphy, N. Delamater, J. Wallace, C. Barnes, G. Magelssen, P. Gobby, A. Hauer, N. Dague, A. Richard, J. P. Jadaud, in Proceedings of the IAEA, Osaka (1998)

  14. B. J. MacGowan, R. L. Berger, B. I. Cohen, C. D. Decker, S. Dixit, S. H. Glenzer, D. E. Hinkel, R. K. Kirkwood, A. B. Langdon, E. Lefebvre, J. D. Moody, J. E. Rothenberg, C. Rousseaux, L. J. Suter, C. H. Still, E. A. Williams, in Proceedings of the IAEA, Yokahama (1999)

  15. M. D. Rosen, J. D. Lindl, Laser Program Annual Report, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50055-83, 1983 (unpublished)

  16. R.P.J. Town, A.R. Bell, Phys. Rev. Lett. 67, 1863 (1991)

    Article  ADS  Google Scholar 

  17. H.X. Vu, Comput. Phys. Commun. 127, 71 (2000)

    Article  MATH  ADS  Google Scholar 

  18. G.B. Zimmerman, W.L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)

    Google Scholar 

  19. B.A. Remington, S.V. Weber, M.M. Marinak, S.W. Haar, J.D. Kilkenny, R. Wallace, G. Dimonte, Phys. Rev. Lett. 73, 545 (1994)

    Article  ADS  Google Scholar 

  20. T.J. Orzechowski, M.D. Rosen, H.N. Kornblum, J.L. Porter, L.J. Suter, A.R. Thiessen, R.J. Wallace, Phys. Rev. Lett. 77, 3545 (1996)

    Article  ADS  Google Scholar 

  21. D. Colombant, M. Klapisch, A. Bar-Shalom, Phys. Rev. E 57, 3411 (1998)

    Article  ADS  Google Scholar 

  22. L. Suter, J. Rothenberg, D. Munro, B. Van Wonterghem, S. Haan, Phys. Plasmas 7, 2092 (2000)

    Article  ADS  Google Scholar 

  23. H.L. Wilkens, J. Gunther, M.P. Mauldin, A. Nikroo, J.R. Wall, D.R. Wall, R.J. Wallace, Fusion Sci. Technol. 49, 846 (2006)

    Google Scholar 

  24. H.L. Wilkens, A. Nikroo, D.R. Wall, J.R. Wall, Phys. Plasmas 14, 056310 (2007)

    Article  ADS  Google Scholar 

  25. O.S. Jones, J. Schein, M.D. Rosen, L.J. Suter, R.J. Wallace, E.L. Dewald, S.H. Glenzer, K.M. Campbell, J. Gunther, B.A. Hammel, O.L. Landen, C.M. Sorce, R.E. Olson, G.A. Rochau, H.L. Wilkens, J.L. Kaae, J.D. Kilkenny, A. Nikroo, S.P. Regan, Phys. Plasmas 14, 056311 (2007)

    Article  ADS  Google Scholar 

  26. J. Schein, O. Jones, M. Rosen, E. Dewald, S. Glenzer, J. Gunther, B. Hammel, O. Landen, L. Suter, R. Wallace, Phys. Rev. Lett. 98, 175003 (2007)

    Article  ADS  Google Scholar 

  27. M.D. Rosen, J.H. Hammer, Phys. Rev. E 72, 056403 (2005)

    Article  ADS  Google Scholar 

  28. A.A. Andreev, J. Limpouch, A.B. Iskakov, H. Nakano, Phys. Rev. E 65, 026403 (2002)

    Article  ADS  Google Scholar 

  29. W. Mead, E.K. Stover, Phys. Rev. A 38, 5275 (1988)

    Article  ADS  Google Scholar 

  30. G. Kulcsár, D. AlMawlawi, F.W. Budnik, P.R. Herman, M. Moskovits, L. Zhao, R.S. Marjoribanks, Phys. Rev. Lett. 84, 5149 (2000)

    Article  ADS  Google Scholar 

  31. P.P. Rajeev, P. Ayyub, S. Bagchi, G.R. Kumar, Opt. Lett. 29, 2662 (2004)

    Article  ADS  Google Scholar 

  32. T. Nishikawa, H. Nakano, K. Oguri, N. Uesugi, K. Nishio, H. Masuda, J. Appl. Phys. 96, 7537 (2004)

    Article  ADS  Google Scholar 

  33. T. Nishikawa, H. Nakano, N. Uesugi, T. Serikawa, Appl. Phys. B 66, 567 (1998)

    Article  ADS  Google Scholar 

  34. H. Nakano, A.A. Andreev, J. Limpouch, Appl. Phys. B 79, 469 (2004)

    Article  Google Scholar 

  35. R. Fazeli, M.H. Mahdieh, G.J. Tallents, Phys. Lett. A 374, 2936 (2010)

    Article  ADS  Google Scholar 

  36. R. Fazeli, M.H. Mahdieh, G.J. Tallents, Laser Part. Beams 29, 193 (2011)

    Article  Google Scholar 

  37. H. Nishimura, T. Endo, H. Shiraga, Y. Kato, S. Nakai, Appl. Phys. Lett. 62, 1344 (1992)

    Article  ADS  Google Scholar 

  38. H. Fiedorowicz, A. Bartnik, R. Jarocki, R. Rakowski, M. Szczurek, Appl. Phys. B 70, 305 (2000)

    Article  ADS  Google Scholar 

  39. P. Amendt, M. Dunne, D.D. Ho, J.D. Lindl, Fusion Sci. Technol. 60, 49 (2011)

    Article  Google Scholar 

  40. M. Dunne, E.I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. Diaz de la Rubia, B. El-Dasher, J.C. Farmer, D. Flowers, K.J. Kramer, L. Lagin, J.F. Latkowski, J. Lindl, W. Meier, R. Miles, G.A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, E. Storm, Fusion Sci. Technol. 60, 19 (2011)

    Article  Google Scholar 

  41. J.S. Ross, P. Amendt, L.J. Atherton, M. Dunne, S.H. Glenzer, J.D. Lindl, D. Meeker, E.I. Moses, A. Nikroo, R. Wallace, Sci. Rep. 3, 1453 (2013)

    Article  ADS  Google Scholar 

  42. G.J. Pert, J. Fluid Mech. 131, 401 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. E.L. Dewald, M. Rosen, S.H. Glenzer, L.J. Suter, F. Girard, J.P. Jadaud, J. Schein, C. Constantin, F. Wagon, G. Huser, P. Neumayer, O.L. Landen, Phys. Plasmas 15, 072706 (2008)

    Article  ADS  Google Scholar 

  44. R.E. Olson, L.J. Suter, J.L. Kline, D.A. Callahan, M.D. Rosen, K. Widmann, E.A. Williams, D.E. Hinkel, N.B. Meezan, G.A. Rochau, A.L. Warrick, S.H. Langer, C. Thomas, S.N. Dixit, E.L. Dewald, M.B. Schneider, J.D. Moody, P. Michel, R.J. Wallace, O.L. Landen, J. Edwards, B.J. MacGowan, S.H. Glenzer, J. Phys: Conf. Ser. 244, 032057 (2010)

    ADS  Google Scholar 

  45. H.R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964)

    Google Scholar 

  46. J. Cooper, Rep. Prog. Phys. 29, 35 (1966)

    Article  ADS  Google Scholar 

  47. W.J. Karzas, R. Latter, Astrophys. J. Suppl. VI 55, 167 (1961)

    Article  ADS  Google Scholar 

  48. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1950)

    MATH  Google Scholar 

  49. D. Salzmann, Atomic Physics In Hot Plasmas (Oxford University Press, Oxford, 1998)

    Google Scholar 

  50. D. Mihalas, Stellar Atmospheres (W. H. Freeman, 1978)

  51. F. Ze, D.R. Kania, S.H. Langer, H. Kornblum, R. Kauffman, J. Kilkenny, E.M. Campbell, G. Tietbohl, J. Appl. Phys. 66, 1935 (1989)

    Article  ADS  Google Scholar 

  52. D.M. Chambers, S.H. Glenzer, J. Hawreliak, E. Wolfrum, A. Gouveia, R.W. Lee, R.S. Marjoribanks, O. Renner, P. Sondhauss, S. Topping, P.E. Young, P.A. Pinto, J.S. Wark, JQSRT 71, 237 (2001)

    Article  Google Scholar 

  53. A. Djaoui, R. Evans, T.A. Hall, A. Badger, F.B. Rosmej, J. Phys. B: At. Mol. Opt. Phys. 28, 1921 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fazeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazeli, R. Efficient X-ray emission from laser-irradiated low-density lead target: a substitute for gold in hohlraum design. Appl. Phys. B 121, 95–105 (2015). https://doi.org/10.1007/s00340-015-6205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6205-y

Keywords

Navigation