Skip to main content
Log in

Microwave magnetoelectric fields: helicities and reactive power flows

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The dual symmetry between the electric and magnetic fields underlies Maxwell’s electrodynamics. Due to this symmetry, one can describe topological properties of an electromagnetic field in free space and obtain the conservation law of optical (electromagnetic) helicity. What kind of the field helicity one can expect to see when the electromagnetic-field symmetry is broken? The near fields originated from small ferrite particles with magnetic-dipolar-mode oscillations are the fields with the electric and magnetic components, but with broken dual (electric–magnetic) symmetry. These fields—called magnetoelectric (ME) fields—have topological properties different from such properties of electromagnetic fields. The helicity states of ME fields are topologically protected quantum-like states. In this paper, we study the helicity properties of ME fields. We analyze conservation laws of the ME-field helicity and show that the helicity density is related to an imaginary part of the complex power-flow density. We show also that the helicity of ME fields can be a complex value. The shown topological properties of the ME fields can be useful for novel near- and far-field microwave applications. The obtained results can find application for development of novel microwave metamaterials. Strongly localized ME fields, having both the real and imaginary helicity parameters, open unique perspective for sensitive microwave probing of structural characteristics of chemical and biological objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.D. Jackson, Classical electrodynamics, 2nd edn. (Wiley, New York, 1975)

    MATH  Google Scholar 

  2. M.M. Coles, D.L. Andrews, Phys. Rev. A 85, 063810 (2012)

    Article  ADS  Google Scholar 

  3. R.P. Cameron, S.M. Barnett, A.M. Yao, New J. Phys. 14, 053050 (2012)

    Article  ADS  Google Scholar 

  4. K.Y. Bliokh, A.Y. Bekshaev, F. Nori, New J. Phys. 15, 033026 (2013)

    Article  ADS  Google Scholar 

  5. A. Alù, M.G. Silveirinha, A. Salandrino, N. Engheta, Phys. Rev. B 75, 155410 (2007)

    Article  ADS  Google Scholar 

  6. J. Schilling, Nat. Photon. 5, 449 (2011)

    Article  ADS  Google Scholar 

  7. L.D. Landau, E.M. Lifshitz, Electrodynamics of continuous media, 2nd edn. (Pergamon, Oxford, 1984)

    Google Scholar 

  8. D.C. Mattis, The theory of magnetism (Harper & Row Publishers, New York, 1965)

    Google Scholar 

  9. A.I. Akhiezer, V.G. Bar’yakhtar, S.V. Peletminskii, Spin waves (North-Holland, Amsterdam, 1968)

    Google Scholar 

  10. A.G. Gurevich, G.A. Melkov, Magnetic oscillations and waves (CRC Press, New York, 1996)

    Google Scholar 

  11. R.L. White, I.H. Solt Jr, Phys. Rev. 104, 56 (1956)

    Article  ADS  Google Scholar 

  12. J.F. Dillon Jr, J. Appl. Phys. 31, 1605 (1960)

    Article  ADS  Google Scholar 

  13. T. Yukawa, K. Abe, J. Appl. Phys. 45, 3146 (1974)

    Article  ADS  Google Scholar 

  14. E.O. Kamenetskii, A.K. Saha, I. Awai, Phys. Lett. A 332, 303 (2004)

    Article  MATH  ADS  Google Scholar 

  15. E.O. Kamenetskii, Phys. Rev. E 63, 066612 (2001)

    Article  ADS  Google Scholar 

  16. E.O. Kamenetskii, M. Sigalov, R. Shavit, J. Phys. Condens. Matter 17, 2211 (2005)

    Article  ADS  Google Scholar 

  17. L.R. Walker, Phys. Rev. 105, 390 (1957)

    Article  ADS  Google Scholar 

  18. E.O. Kamenetskii, J. Phys. A Math. Theor. 40, 6539 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. E.O. Kamenetskii, J. Phys. Condens. Matter 22, 486005 (2010)

    Article  Google Scholar 

  20. E.O. Kamenetskii, R. Joffe, R. Shavit, Phys. Rev. A 84, 023836 (2011)

    Article  ADS  Google Scholar 

  21. E.O. Kamenetskii, R. Joffe, R. Shavit, Phys. Rev. E 87, 023201 (2013)

    Article  ADS  Google Scholar 

  22. M. Berezin, E.O. Kamenetskii, R. Shavit, J. Opt. 14, 125602 (2012)

    Article  ADS  Google Scholar 

  23. M. Berezin, E.O. Kamenetskii, R. Shavit, Phys. Rev. E 89, 023207 (2014)

    Article  ADS  Google Scholar 

  24. E.O. Kamenetskii, E. Hollander, R. Joffe, R. Shavit, J. Opt. 17, 025601 (2015)

    Article  ADS  Google Scholar 

  25. M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005)

    Article  ADS  Google Scholar 

  26. Y. Takahashi, Y. Yamasaki, Y. Tokura, Phys. Rev. Lett. 111, 037204 (2013)

    Article  ADS  Google Scholar 

  27. Y. Okamura, F. Kagawa, M. Mochizuki, M. Kubota, S. Seki, S. Ishiwata, M. Kawasaki, Y. Onose, Y. Tokura, Nat. Commun. 4, 2391 (2013)

    Article  ADS  Google Scholar 

  28. Y. Okamura, F. Kagawa, S. Seki, M. Kubota, M. Kawasaki, Y. Tokura, Phys. Rev. Lett. 114, 197202 (2015)

    Article  ADS  Google Scholar 

  29. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006)

    Article  ADS  Google Scholar 

  30. N.A. Spaldin, M. Fiebig, M. Mostovoy, J. Phys. Condens. Matter 20, 434203 (2008)

    Article  ADS  Google Scholar 

  31. T. Thonhauser, D. Ceresoli, D. Vanderbilt, R. Resta, Phys. Rev. Lett. 95, 137205 (2005)

    Article  ADS  Google Scholar 

  32. D. Ceresoli, T. Thonhauser, D. Vanderbilt, R. Resta, Phys Rev. B 74, 024408 (2006)

    Article  ADS  Google Scholar 

  33. A.M. Essin, J.E. Moore, D. Vanderbilt, Phys. Rev. Lett. 102, 146805 (2009)

    Article  ADS  Google Scholar 

  34. A. Malashevich, I. Souza, S. Coh, D. Vanderbilt, New J. Phys. 12, 053032 (2010)

    Article  ADS  Google Scholar 

  35. S. Coh, D. Vanderbilt, A. Malashevich, I. Souza, Phys. Rev. B 83, 085108 (2011)

    Article  ADS  Google Scholar 

  36. F. Wilczek, Phys. Rev. Lett. 58, 1799 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  37. H. Pfister, W. Gekelman, Am. J. Phys. 59, 497 (1991)

    Article  ADS  Google Scholar 

  38. H.K. Moffatt, A. Tsinober, Annu. Rev. Fluid Mech. 24, 281 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  39. M.A. Berger, Plasma Phys. Control. Fusion 41, B167 (1999)

    Article  ADS  Google Scholar 

  40. G. Afanasiev, Y. Stepanovsky, IL Nuovo Cimento 109A, 271 (1996)

    Article  ADS  Google Scholar 

  41. J.L. Trueba, A.F. Rañada, Eur. J. Phys. 17, 141 (1996)

    Article  Google Scholar 

  42. D.M. Lipkin, J. Math. Phys. 5, 696 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Y. Tang, A.E. Cohen, Phys. Rev. Lett. 104, 163901 (2010)

    Article  ADS  Google Scholar 

  44. K. Bliokh, F. Nori, Phys. Rev. A 83, 021803(R) (2011)

    Article  ADS  Google Scholar 

  45. J.S. Choi, M. Cho, Phys. Rev. A 86, 063834 (2012)

    Article  ADS  Google Scholar 

  46. E. Hendry et al., Nat. Nanotechnol. 5, 783 (2010)

    Article  ADS  Google Scholar 

  47. M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, Phys. Rev. X 2, 031010 (2012)

    Google Scholar 

  48. K.Y. Bliokh, Y.S. Kivshar, F. Nori, Phys. Rev. Lett. 113, 033601 (2014)

    Article  ADS  Google Scholar 

  49. R. Joffe, E.O. Kamenetskii, R. Shavit, J. Appl. Phys. 113, 063912 (2013)

    Article  ADS  Google Scholar 

  50. M. Sigalov, E.O. Kamenetskii, R. Shavit, J. Phys. Condens. Matter 21, 016003 (2009)

    Article  ADS  Google Scholar 

  51. D.D. Stancil, Theory of magnetostatic waves (Springer, New York, 1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Kamenetskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamenetskii, E.O., Berezin, M. & Shavit, R. Microwave magnetoelectric fields: helicities and reactive power flows. Appl. Phys. B 121, 31–47 (2015). https://doi.org/10.1007/s00340-015-6199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6199-5

Keywords

Navigation