Applied Physics B

, Volume 121, Issue 1, pp 7–17 | Cite as

Frequency modulation characteristics for interband cascade lasers emitting at 3 μm

Article

Abstract

The frequency modulation (FM) efficiency and frequency modulation/intensity modulation (FM/IM) phase shift of mid-infrared interband cascade lasers (ICLs) are studied experimentally. The modulation parameters of 2997 and 3266 nm ICLs are characterized using tunable laser absorption spectroscopy (TLAS) with H2O absorption lines located at 2998.8 and 3263.3 nm, respectively. The FM efficiency is determined by the distance between two zero crossings of the measured wavelength modulation spectrum with the second-harmonic (WMS-2f) detection signal, whereas the FM/IM phase shift is extracted by measuring the time delay between the laser intensity and frequency response, using the H2O absorption lines as markers. The results show that the FM efficiency is more than four times larger than that of conventional near-infrared distributed feedback lasers and that it decreases monotonically with increasing modulation frequency. The response of the FM/IM phase shift shows three distinct regions in its response to the increasing modulation frequency. The FM characteristics of ICLs are different from those of both conventional diode lasers and quantum cascade lasers because of the different semiconducting materials and working principles involved. This study can help to optimize wavelength modulation spectroscopy (WMS)-based sensor performance and improve simulation models for WMS.

References

  1. 1.
    P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, B. Jänker, Opt. Laser Eng. 37, 101 (2002)CrossRefGoogle Scholar
  2. 2.
    A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M.C. Amann, Opt. Lett. 33, 1566 (2008)CrossRefADSGoogle Scholar
  3. 3.
    H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052 (2006)CrossRefADSGoogle Scholar
  4. 4.
    J. Reid, D. Labrie, Appl. Phys. B 26, 203 (1981)CrossRefADSGoogle Scholar
  5. 5.
    S. Schilt, L. Thevenaz, P. Robert, Appl. Opt. 42, 6728 (2003)CrossRefADSGoogle Scholar
  6. 6.
    G. Jacobsen, H. Olesen, F. Birkedahl, B. Tromborg, Electron. Lett. 18, 874 (1982)CrossRefADSGoogle Scholar
  7. 7.
    D. Welford, S. Alexander, J. Lightwave Technol. 3, 1092 (1985)CrossRefADSGoogle Scholar
  8. 8.
    S. Schilt, L. Thévenaz, Appl. Opt. 43, 4446 (2004)CrossRefADSGoogle Scholar
  9. 9.
    A. Lytkine, W. Jäger, J. Tulip, Spectrochim. Acta A 63, 940 (2006)CrossRefADSGoogle Scholar
  10. 10.
    A. Lytkine, W. Jäger, J. Tulip, Proc. Integr. Optoelectron. Devices 2005, 157 (2005)Google Scholar
  11. 11.
    J. Chen, A. Hangauer, R. Strzoda, M.C. Amann, Appl. Phys. Lett. 91, 141105 (2007)CrossRefADSGoogle Scholar
  12. 12.
    L. Tao, K. Sun, D.J. Miller, M.A. Khan, M.A. Zondlo, Opt. Lett. 37, 1358 (2012)CrossRefADSGoogle Scholar
  13. 13.
    S. Lundqvist, P. Kluczynski, R. Weih et al., Appl. Opt. 25, 6009 (2012)CrossRefADSGoogle Scholar
  14. 14.
    A. Soibel, K. Mansour, Y. Qiu, C.J. Hill, R.Q. Yang, J. Appl. Phys. 101, 093104 (2007)CrossRefADSGoogle Scholar
  15. 15.
    A. Bauer, K. Rößner, T. Lehnhardt et al., Semicond. Sci. Technol. 26, 014032 (2011)CrossRefADSGoogle Scholar
  16. 16.
    I. Vurgaftman, R. Weih, M. Kamp et al., J. Phys. D Appl. Phys. 48, 123001 (2015)CrossRefADSGoogle Scholar
  17. 17.
    L. Hildebrandt, M. von Edlinger, J. Scheuermann, L. Nähle, M. Fischer, J. Koeth, M. Kamp, R. Weih, S. Höfling, Proc. Laser Appl. Chem. Secur. Environ. Anal. LTu3D.4 (2014)Google Scholar
  18. 18.
    J.S. Li, W. Chen, H. Fischer, Appl. Spectrosc. Rev. 48, 523 (2013)CrossRefADSGoogle Scholar
  19. 19.
    Z.H. Du, Z.Y. Zhang, W.M. Zhen, B. Xiong, J.Y. Li, J. Atmos. Environ. Opt. 10, 165 (2015)Google Scholar
  20. 20.
    P. Kluczynski, A. Lindberg, O. Axner, Appl. Opt. 40, 783 (2001)CrossRefADSGoogle Scholar
  21. 21.
    P. Kluczynski, A. Lindberg, O. Axner, Appl. Opt. 40, 794 (2001)CrossRefADSGoogle Scholar
  22. 22.
    X. Chao, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 20, 115201 (2009)CrossRefADSGoogle Scholar
  23. 23.
    G.Y. Wang, J.L. Song, Y.J. Hong, Adv. Mater. Res. 631, 982 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Duffin, A.J. McGettrick, W. Johnstone, G. Stewart, D.G. Moodie, J. Lightwave Technol. 25, 3114 (2007)CrossRefADSGoogle Scholar
  25. 25.
    A.J. McGettrick, K. Duffin, W. Johnstone, G. Stewart, D.G. Moodie, J. Lightwave Technol. 26, 432 (2008)CrossRefADSGoogle Scholar
  26. 26.
    T. Lehnhardt, M. Hummer, K. Rößner et al., Appl. Phys. Lett. 92, 183508 (2008)CrossRefADSGoogle Scholar
  27. 27.
    L.S. Rothman, I.E. Gordon, A. Barbe et al., J. Quant. Spectrosc. Radiat. 110, 533 (2009)CrossRefADSGoogle Scholar
  28. 28.
    A. Hangauer, J. Chen, R. Strzoda et al., IEEE J. Sel. Top. Quantum Electron. 17, 1584 (2011)CrossRefGoogle Scholar
  29. 29.
    A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 31, 807 (2007)CrossRefGoogle Scholar
  30. 30.
    W. Ren, F.K. Tittel, Proc. Opt. Instrum. Energy Environ. Appl. EW4A. 4 (2014)Google Scholar
  31. 31.
    L.C. Philippe, R.K. Hanson, Appl. Opt. 32, 6090 (1993)CrossRefADSGoogle Scholar
  32. 32.
    J.T.C. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 43, 6500 (2004)CrossRefADSGoogle Scholar
  33. 33.
    I. Vurgaftman, W.W. Bewley, C.D. Merritt, C.L. Canedy, C.S. Kim, J. Abell, J.R. Meyer, M. Kim, Proc. SPIE 8268, 82681F (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Lab of Precision Measuring Technology and InstrumentsTianjin UniversityTianjinChina
  2. 2.School of Precision Instrument and Opto-electronics EngineeringTianjin UniversityTianjinChina
  3. 3.College of Information EngineeringNorth China University of Science and TechnologyTangshanChina

Personalised recommendations