Skip to main content
Log in

Sensitive, time-resolved, broadband spectroscopy of single transient processes

  • Published:
Applied Physics B Aims and scope Submit manuscript


Intracavity absorption spectroscopy with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of transient gain and absorption in electrically excited Xe and Kr plasmas. The achieved time resolution for broadband spectral recording of a single process is 25 µs. For pulsed-periodic processes, the time resolution is limited by the laser pulse duration, which is set here to 3 µs. This pulse duration also predefines the effective absorption path length, which amounts to 900 m. The presented technique can be applied to multicomponent analysis of single transient processes such as shock tube experiments, pulse detonation engines, or explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others


  1. C. Schulz, V. Sick, Tracer-LIF diagnostics: quantitative measurements of fuel concentration, temperature and air/fuel ratio in practical combustion situations. Prog. Energy Combust. Sci. 31, 75–121 (2005)

    Article  Google Scholar 

  2. M. Aldén, J. Bood, Z. Li, M. Richter, Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques. Proc. Combust. Inst. 33, 69–97 (2011)

    Article  Google Scholar 

  3. R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases. Appl. Phys. B 116, 855–865 (2014)

    Article  ADS  Google Scholar 

  4. J. Hodgkinson, R.P. Tatam, Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013)

    Article  ADS  Google Scholar 

  5. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Wavelength-modulation spectroscopy near 2.5 µm for H2O and temperature in high-pressure and -temperature gases. Appl. Phys. B 116, 705–716 (2014)

    Article  ADS  Google Scholar 

  6. O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, V. Ebert, VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Opt. Express 21, 19951–19965 (2013)

    Article  ADS  Google Scholar 

  7. S.H. Dürrstein, M. Aghsaee, L. Jerig, M. Fikri, C. Schulz, A shock tube with a high-repetition-rate time-of-flight mass spectrometer for investigations of complex reaction systems. Rev. Sci. Instr. 82, 084103 (2011)

    Article  ADS  Google Scholar 

  8. V.M. Baev, T. Latz, P.E. Toschek, Laser intracavity absorption spectroscopy. Appl. Phys. B 69, 171–202 (1999)

    Article  ADS  Google Scholar 

  9. B. Löhden, S. Kuznetsova, K. Sengstock, V.M. Baev, A. Goldman, S. Cheskis, B. Pálsdóttir, Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments. Appl. Phys. B 102, 331–344 (2011)

    Article  ADS  Google Scholar 

  10. D.C. Miller, J.J. O’Brien, G.H. Atkinson, In situ detection of BH2 and atomic boron by intracavity laser spectroscopy in the plasma dissociation of gaseous B2H6. J. Appl. Phys. 65, 2645–2651 (1989)

    Article  ADS  Google Scholar 

  11. S.G. Cheskis, O.M. Sarkisov, Flash photolysis of ammonia in the presence of oxygen. Chem. Phys. Lett. 62, 72–76 (1979)

    Article  ADS  Google Scholar 

  12. F. Stoeckel, M.D. Schuh, N. Goldstein, G.H. Atkinson, Time resolved intracavity laser spectroscopy: 266 nm photodissociation of acetaldehyde vapor to form HCO. Chem. Phys. 95, 135–144 (1985)

    Article  ADS  Google Scholar 

  13. P. Sheehy, J.I. Steinfeld, Discharge-flow kinetics measurements using intracavity laser absorption spectroscopy. J. Phys. Chem. B 109, 8358–8362 (2005)

    Article  Google Scholar 

  14. B. Ståhlberg, V.M. Baev, G. Gaida, H. Schröder, P.E. Toschek, Laser intracavity absorption spectroscopy of He (a 3Σ +u ). J. Chem. Soc. Faraday Trans. 2(81), 207–216 (1985)

    Article  Google Scholar 

  15. V.M. Baev, H. Schröder, P.E. Toschek, LiF:F2+-centre laser for intracavity spectroscopy. Opt. Commun. 36, 57–62 (1981)

    Article  ADS  Google Scholar 

  16. A. Fomin, T. Zavlev, I. Rahinov, S. Cheskis, A fiber laser intracavity absorption spectroscopy (FLICAS) sensor for simultaneous measurements of CO and CO2 concentrations and temperature. Sens. Actuators B 210, 431–438 (2015)

    Article  Google Scholar 

  17. I. Rahinov, A. Goldman, S. Cheskis, Intracavity laser absorption spectroscopy and cavity ring-down spectroscopy in low-pressure flames. Appl. Phys. B 81, 143–149 (2005)

    Article  ADS  Google Scholar 

  18. A. Goldman, I. Rahinov, S. Cheskis, B. Löhden, S. Wexler, K. Sengstock, V.M. Baev, Fiber laser intracavity absorption spectroscopy of ammonia and hydrogen cyanide in low pressure hydrocarbon flames. Chem. Phys. Lett. 423, 147–151 (2006)

    Article  ADS  Google Scholar 

  19. A. Goldman, S. Cheskis, Intracavity laser absorption spectroscopy of sooting acetylene/air flames. Appl. Phys. B 92, 281–286 (2008)

    Article  ADS  Google Scholar 

  20. V.M. Baev, G. Gaida, H. Schröder, P.E. Toschek, Quantum fluctuations of a multi-mode laser oscillator. Opt. Commun. 38, 309–313 (1981)

    Article  ADS  Google Scholar 

  21. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. LeRoy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, Vl.G. Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)

    Article  ADS  Google Scholar 

  22. J. Hünkemeier, R. Böhm, V.M. Baev, P.E. Toschek, Spectral dynamics of multimode Nd3+- and Yb3+-doped fibre lasers with intracavity absorption. Opt. Commun. 176, 417–428 (2000)

    Article  ADS  Google Scholar 

  23. A.R. Striganov, N.S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms (IFI/Plenum, New York, 1968)

    Book  Google Scholar 

  24. V. Hoffmann, P.E. Toschek, New laser emission from the ionized xenon. IEEE J. Quantum Electron. 6, 757 (1970)

    Article  ADS  Google Scholar 

  25. S.A. Lawton, J.B. Richards, L.A. Newman, L. Specht, T.A. DeTemple, The high-pressure infrared xenon laser. J. Appl. Phys. 50, 3888–3898 (1979)

    Article  ADS  Google Scholar 

  26. M.J. Weber, Handbook of Laser Wavelengths (CRC Press, Boca Raton, 1999)

    Google Scholar 

  27. Y.H. Meyer, M.N. Nenchev, On intracavity absorption and self frequency locking in pulsed dye lasers. Opt. Commun. 41, 292–294 (1982)

    Article  ADS  Google Scholar 

  28. V.M. Baev, J. Eschner, A. Weiler, Intracavity spectroscopy with modulated multimode lasers. Appl. Phys. B 49, 315–322 (1989)

    Article  ADS  Google Scholar 

  29. V.L. Kalashnikov, E. Sorokin, Soliton absorption spectroscopy. Phys. Rev. A 81, 033840 (2010)

    Article  ADS  Google Scholar 

  30. W. Demtröder, Laser Spectroscopy: Experimental Techniques, vol. 2 (Springer, Berlin, 2008)

    Google Scholar 

Download references


The authors wish to thank P.E. Toschek for helpful discussions, S. Cheskis for the development of software enabling fast data acquisition, and W. Wurth for technical support. This work was supported by the Deutsche Forschungsgemeinschaft within GrK 1355.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Valery M. Baev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fjodorow, P., Baev, I., Hellmig, O. et al. Sensitive, time-resolved, broadband spectroscopy of single transient processes. Appl. Phys. B 120, 667–673 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: