Skip to main content

Advertisement

Log in

Spectral matching research for light-emitting diode-based neonatal jaundice therapeutic device light source

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

To decrease the risk of bilirubin encephalopathy and minimize the need for exchange transfusions, we report a novel design for light source of light-emitting diode (LED)-based neonatal jaundice therapeutic device (NJTD). The bilirubin absorption spectrum in vivo was regarded as target. Based on spectral constructing theory, we used commercially available LEDs with different peak wavelengths and full width at half maximum as matching light sources. Simple genetic algorithm was first proposed as the spectral matching method. The required LEDs number at each peak wavelength was calculated, and then, the commercial light source sample model of the device was fabricated to confirm the spectral matching technology. In addition, the corresponding spectrum was measured and the effect was analyzed finally. The results showed that fitted spectrum was very similar to the target spectrum with 98.86 % matching degree, and the actual device model has a spectrum close to the target with 96.02 % matching degree. With higher fitting degree and efficiency, this matching algorithm is very suitable for light source matching technology of LED-based spectral distribution, and bilirubin absorption spectrum in vivo will be auspicious candidate for the target spectrum of new LED-based NJTD light source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.J. Cremer, P.W. Perryman, D.H. Richards, The Lancet 271, 1094–1097 (1958)

    Article  Google Scholar 

  2. L. Thorington, L. Cunningham, J. Parascandola, Illum. Eng. 66, 240–250 (1971)

    Google Scholar 

  3. J. Elizabeth, Australian Paediatric Journal 11, 49–52 (1974)

    Google Scholar 

  4. A.F. Mcdonagh, Biochemical Society Transactions 4, 219–222 (1976)

    Article  Google Scholar 

  5. J.F. Ennever, M. Sobel, A.F. Mcdonagh, W.T. Speck, Pediatric Research 18, 667–670 (1984)

    Article  Google Scholar 

  6. K.L. Tan, G.C. Lim, K.W. Boey, Acta Paediatr. 81, 870–874 (1992)

    Article  Google Scholar 

  7. L.A. Stokowski, Adv. Neonatal. Care 11, S10–S21 (2011)

    Article  Google Scholar 

  8. R. Pratesi, L. Ronchi, G. Cecchi, G. Sbrana, M.G. Migliorini, C. Vecchi, G. Donzelli, Photochem. Photobiol. 40, 77–83 (1984)

    Article  Google Scholar 

  9. American Academy of Pediatrics Clinical Practice Guideline Subcommittee on Hyperbilirubinemia, Pediatrics 114, 297–316 (2004)

    Article  Google Scholar 

  10. M.J. Maisels, A.F. McDonagh, N. Engl. J. Med 358, 920–928 (2008)

    Article  Google Scholar 

  11. V. K. Bhutani and the Committee on Fetus and Newborn Pediatrics, Pediatrics 128, e1046–e1052 (2011)

    Article  Google Scholar 

  12. F. Ebbesen, P. Madsen, S. Støvring, H. Hundborg, G. Agati, Acta Paediatr. 96, 837–841 (2007)

    Article  Google Scholar 

  13. D. Geido, H. Failache, F. Simini, J. Phys: Conf. Ser. 90, 012024 (2007)

    ADS  Google Scholar 

  14. Y. Kale, O. Aydemir, Ü. Celik, S. Kavurt, S. Isikoglu, A.Y. Bas, N. Demirel, Early Human Dev. 89, 957–960 (2013)

    Article  Google Scholar 

  15. I. Fryc, S.W. Brown, G.P. Eppeldauer, Opt. Eng. 44(11), 111309 (2005)

    Article  ADS  Google Scholar 

  16. I. Fryc, S.W. Brown, Y. Ohno, Proc. SPIE 5941, 59411I (2005)

    Article  ADS  Google Scholar 

  17. J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan, USA, 1975)

    Google Scholar 

  18. O. Surmeli-Onay, A. Korkmaz, S. Yigit, M. Yurdakok, Pediatr. Dermatol. 30, 529–533 (2013)

    Article  Google Scholar 

  19. E.F. Schubert, Light-Emitting Diodes, 2nd edn. (Cambridge Univ. Press, Cambridge, 2006)

    Book  Google Scholar 

  20. A.A. Lamola, V.K. Bhutani, R.J. Wong, D.K. Stevenson, A.F. McDonagh, Pediatr. Res. 74, 54–60 (2013)

    Article  Google Scholar 

  21. T. Kolbe, A. Knauer, H. Wenzel, S. Einfeldt, V. Kueller, P. Vogt, M. Weyers, M. Kneissl, Phys. Status Solidi C 6, S889–S892 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Prof. Angelo A. Lamola is thanked for valuable advice, the graphic of action spectrum of bilirubin in vivo and corresponding data. The authors are also grateful to the support by the Key Project of Science and Technology Plan of Fujian Province of China under Grant 2013I0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenning Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, R., Guo, Z. & Lin, J. Spectral matching research for light-emitting diode-based neonatal jaundice therapeutic device light source. Appl. Phys. B 120, 645–651 (2015). https://doi.org/10.1007/s00340-015-6177-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6177-y

Keywords

Navigation