Applied Physics B

, Volume 120, Issue 2, pp 185–199 | Cite as

Infrared planar laser-induced fluorescence with a CW quantum-cascade laser for spatially resolved CO2 and gas properties

  • Christopher S. Goldenstein
  • Victor A. Miller
  • Ronald K. Hanson
Rapid Communication

Abstract

The design and demonstration of a new infrared laser-induced fluorescence (IR-LIF) technique that enables spatially resolved measurements of CO2, temperature, and pressure, with potential for velocity, are presented. A continuous-wave, wavelength-tunable, quantum-cascade laser (QCL) near \(4.3\,\upmu \hbox {m}\) with up to 120 mW was used to directly excite the asymmetric-stretch fundamental-vibration band of CO2 for approximately 200 to \(10^5\) times more absorbance compared with previous IR-LIF techniques. This enabled LIF detection limits (signal-to-noise ratio of 1) of 20 and 70 ppm of CO2 in Ar and \(\hbox {N}_2\), respectively, at 1 bar and 296 K in static-cell experiments. Simplified and detailed kinetic models for simulating the LIF signal as a function of gas properties are presented and enable quantitative, calibration-free, IR-LIF measurements of CO2 mole fraction within 1–8 % of known values at 0.5–1 bar. By scanning the laser across two absorption transitions and performing a multi-line Voigt fit to the LIF signal, measurements of temperature, pressure, and \(\chi _{\hbox {CO}_2}\) within 2 % of known values were obtained. LIF measurements of gas pressure at a repetition rate up to 200 Hz (in argon) are also presented. Planar-LIF (PLIF) was used to image steady and unsteady CO2–Ar jets at 330 frames per second with a spatial signal-to-noise ratio (SNR) up to 25, corresponding to a detection limit (SNR = 1) of 200 ppm with a projected pixel size of \(40\,\upmu \hbox {m}\). The gas pressure was measured within \(3 \pm 2\) % of the known value (1 bar) at 5 Hz by scanning the QCL across the P(42) absorption transition and least-squares fitting a Voigt profile to the PLIF signal. Spatially resolved measurements of absolute CO2 mole fraction in a laminar jet are also presented.

Keywords

Laser-induced fluorescence Quantum-cascade laser Infrared photophysics CO2 

References

  1. 1.
    R.B. Miles, E. Udd, M. Zimmermann, Quantitative flow visualization in sodium vapor seeded hypersonic helium. Appl. Phys. Lett. 32, 317–319 (1978)ADSCrossRefGoogle Scholar
  2. 2.
    E.C. Rea, R.K. Hanson, Rapid laser-wavelength modulation spectroscopy used as a fast temperature measurement technique in hydrocarbon combustion, Appl. Opt. 27, 4454–4464 (1988)Google Scholar
  3. 3.
    A.Y. Chang, B.E. Battles, R.K. Hanson, Simultaneous measurements of velocity, temperature, and pressure using rapid CW wavelength-modulation laser-induced fluorescence of OH. Opt. Lett. 15, 706–708 (1990)ADSCrossRefGoogle Scholar
  4. 4.
    J. Hult, I.S. Burns, C.F. Kaminski, Measurements of the indium hyperfine structure in an atmospheric-pressure flame by use of diode-laser-induced fluorescence. Opt. Lett. 29, 827–829 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    I.S. Burns, C.F. Kaminski, Diode laser induced fluorescence for gas-phase diagnostics. Z. Phys. Chem. 225, 1343–1366 (2011)CrossRefGoogle Scholar
  6. 6.
    G. Kychakoff, R.D. Howe, R.K. Hanson, J.C. McDaniel, Quantitative visualization of combustion species in a plane. Appl. Opt. 18, 3225–3227 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    M.J. Dyer, D.R. Crosley, Two-dimensional imaging of OH laser-induced fluorescence in a flame. Opt. Lett. 8, 382–384 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    G. Kychakoff, R.D. Howe, R.K. Hanson, M.C. Drake, R.W. Pitz, M. Lapp, C.M. Penney, Science 224, 382–384 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    C. Schulz, V. Sick, Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Prog. Energy Combust. Sci. 31, 75–121 (2005)CrossRefGoogle Scholar
  10. 10.
    W.D. Kulatilaka, S.V. Naik, R.P. Lucht, Development of high-spectral-resolution planar laser-induced fluorescence imaging diagnostics for high-speed gas flows. AIAA J. 46, 17–20 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Ronald K. Hanson, Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33, 1–40 (2011)CrossRefGoogle Scholar
  12. 12.
    B.J. Kirby, R.K. Hanson, Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions. Appl. Phys. B 69, 505–507 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    B.J. Kirby, R.K. Hanson, Imaging of CO and CO2 using infrared planar laser-induced fluorescence. Proc. Combust. Inst. 28, 253–259 (2000)CrossRefGoogle Scholar
  14. 14.
    B.J. Kirby, R.K. Hanson, CO2 imaging with saturated planar laser-induced vibrational fluorescence. Appl. Opt. 40, 6136–6144 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    D.A. Rothamer, R.K. Hanson, Temperature and pressure imaging using infrared planar laser-induced fluorescence. Appl. Opt. 49, 6436–6447 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Z.T. Alwahabi, J. Zetterberg, Z.S. Li, M. Alden, High resolution polarization spectroscopy and laser induced fluorescence of CO2 around 2 μm. Eur. Phys. J. D 42, 41–47 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    J. Zetterberg, S. Blomberg, J. Gustafson, Z.W. Sun, Z.S. Li, E. Lundgren, M. Aldén, An in situ set up for the detection of CO2 from catalytic CO oxidation by using planar laser-induced fluorescence. Rev. Sci. Instrum. 83, 053104 (2012)Google Scholar
  18. 18.
    H. Li, R.K. Hanson, J.B. Jeffries, H. Li, R.K. Hanson, J.B. Jeffries, Meas. Sci. Technol. 15, 1285–1290 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, VlG Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Trans. 130, 4–50 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    B.J. Kirby, Infrared planar laser-induced fluorescence imaging and applications to imaging of carbon monoxide and carbon dioxide, PhD Thesis, Stanford University (2001)Google Scholar
  21. 21.
    R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases. Appl. Phys. B 116, 855–865 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Christopher S. Goldenstein, Jay B. Jeffries, Ronald K. Hanson, Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482 nm. J. Quant. Spectrosc. Radiat. Trans. 130, 100–111 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    D.C. Allen, T.J. Price, C.J.S.M. Simpson, Vibrational deactivation of the bending mode of CO2 measured between 1500 K and 150 K, Chem. Phys. Lett. 45, 183–187 (1976)Google Scholar
  24. 24.
    G.D. Billing, Semiclassical calculation of energy transfer in polyatomic molecules. VII. Intra- and inter-molecular energy transfer in N2 + CO2. Chem. Phys. 67, 35–47 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christopher S. Goldenstein
    • 1
  • Victor A. Miller
    • 1
  • Ronald K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics LaboratoryStanford UniversityStanfordUSA

Personalised recommendations