Skip to main content
Log in

Propene concentration sensing for combustion gases using quantum-cascade laser absorption near 11 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on a strategy to measure, in situ, the concentration of propene (C3H6) in combustion gases using laser absorption spectroscopy. Pyrolysis of n-butane was conducted in a shock tube, in which the resultant gases were probed using an extended cavity quantum-cascade laser. A differential absorption approach using online and offline wavelengths near λ = 10.9 μm enabled discrimination of propene, cancelling the effects of spectral interference from the simultaneous presence of intermediate hydrocarbon species during combustion. Such interference-free measurements were facilitated by exploiting the =C–H bending mode characteristic to alkenes (olefins). It was confirmed, for intermediate species present during pyrolysis of n-butane, that their absorption cross sections were the same magnitude for both online and offline wavelengths. Hence, this allowed time profiles of propene concentration to be measured during pyrolysis of n-butane in a shock tube. Time profiles of propene subsequent to a passing shock wave exhibit trends similar to that predicted by the well-established JetSurF 1.0 chemical kinetic mechanism, albeit lower by a factor of two. Such a laser diagnostic is a first step to experimentally determining propene in real time with sufficient time resolution, thus aiding the refinement and development of chemical kinetic models for combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.P. Dowling, Aeronaut. J. 104, 105 (2000)

    Google Scholar 

  2. R.S.M. Chrystie, I.S. Burns, C.F. Kaminski, Combust. Sci. Technol. 185, 180 (2013)

    Article  Google Scholar 

  3. R.K. Hanson, D.F. Davidson, Prog. Energy Combust. Sci. 44, 103 (2014)

    Article  Google Scholar 

  4. R.S.M. Chrystie, E.F. Nasir, A. Farooq, Proc. Combust. Inst. 35, 3757 (2015)

    Article  Google Scholar 

  5. M.B. Sajid, E.T. Es-sebbar, T. Javed, C. Fittschen, A. Farooq, Int. J. Chem. Kin. 46, 275 (2014)

    Article  Google Scholar 

  6. R.S.M. Chrystie, E.F. Nasir, A. Farooq, Opt. Lett. 39, 6620 (2014)

    Article  ADS  Google Scholar 

  7. H. Wang, D.A. Sheen, Combust. Flame 158, 645 (2011)

    Article  Google Scholar 

  8. D. Bradley, M. Lawes, M.S. Mansour, Proc. Combust. Inst. 33, 1269 (2011)

    Article  Google Scholar 

  9. IPCC Special Report: Safeguarding the Ozone Layer and the Global Climate System (Cambridge University Press 2014)

  10. S.S. Vasu, Z. Hong, D.F. Davidson, R.K. Hanson, D.M. Golden, J. Phys. Chem. A 114, 11529 (2010)

    Article  Google Scholar 

  11. R.M. Spearrin, S. Li, D.F. Davidson, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 35, 3645 (2015)

    Article  Google Scholar 

  12. S.M. Burke, W. Metcalfe, O. Herbinet, F. Battin-Leclerc, F.M. Haas, J. Santner, F.L. Dryer, H.J. Curran, Combust. Flame 161, 2765 (2014)

    Article  Google Scholar 

  13. J. Badra, A.E. Elwardany, F. Khaled, S. Vasu, A. Farooq, Combust. Flame 161, 725 (2014)

    Article  Google Scholar 

  14. C.-W. Zhou, Z.-R. Li, X.-Y. Li, J. Phys. Chem. A 113, 2372 (2009)

    Article  Google Scholar 

  15. J. Zador, A.W. Jasper, J.A. Miller, Phys. Chem. Chem. Phys. 11, 11040 (2009)

    Article  Google Scholar 

  16. L.K. Huynh, H.R. Zhang, S. Zhang, E. Eddings, A. Sarofim, M.E. Law, P.R. Westmoreland, T.N. Truong, J. Phys. Chem. A 113, 3177 (2009)

    Article  Google Scholar 

  17. C. Kappler, J. Zádor, O. Welz, X. Fernandez Ravi, M. Olzmann, A. Taatjes, Z. Craig, Phys. Chem. 225, 1271 (2011)

    Google Scholar 

  18. W.B. Kindzierski, C.C. Small, F. Yi, M.A. Bari, Z. Hashisho, Automotive wastes. Water Environ. Res. 84, 1407 (2012)

    Article  Google Scholar 

  19. C.K. Westbrook, W.J. Pitz, H.J. Curran, J. Phys. Chem. A 110, 6912 (2006)

    Article  Google Scholar 

  20. C. Ji, S.M. Sarathy, P.S. Veloo, C.K. Westbrook, F.N. Egolfopoulos, Combust. Flame 159, 1426 (2012)

    Article  Google Scholar 

  21. X. He, S.M. Walton, B.T. Zigler, M.S. Wooldridge, A. Atreya, Int. J. Chem. Kin. 39, 498 (2007)

    Article  Google Scholar 

  22. A. Samman, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas, G.W. Aunner, Sens. Actuators, B 63, 91 (2000)

    Article  Google Scholar 

  23. S.H. Pyun, J. Cho, D.F. Davidson, R.K. Hanson, Meas. Sci. Technol. 22, 025303 (2011)

    Article  ADS  Google Scholar 

  24. M.B. Sajid, T. Javed, A. Farooq, J. Quant. Spectrosc. Radiat. Transfer 155, 66 (2015)

    Article  Google Scholar 

  25. M.E. MacDonald, W. Ren, Y. Zhu, D.F. Davidson, R.K. Hanson, Fuel 103, 1060 (2013)

    Article  Google Scholar 

  26. I. Stranic, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 142, 58 (2014)

    Article  ADS  Google Scholar 

  27. B. Sirjean et al. JetSurF 1.0, (http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF1.0/index.html) (2009)

  28. CHEMKIN-PRO 15112, Reaction Design: San Diego, (2011)

  29. E.T. Es-sebbar, M. Alrefae, A. Farooq, J. Quant, Spectrosc. Radiat. Transfer 133, 559 (2014)

    Article  ADS  Google Scholar 

  30. C.F. Wang, G.S. Springer, J. Chem. Phys. 59, 6556 (1973)

    Article  ADS  Google Scholar 

  31. J.H. Kiefer, G.C. Sahukar, S. Santhanam, N.K. Srinivasan, R.S. Tranter, J. Chem. Phys. 120, 918 (2004)

    Article  ADS  Google Scholar 

  32. K. Yasunaga, Y. Kuraguchi, R. Ikeuchi, H. Masaoka, O. Takahasi, T. Koike, Y. Hidaka, Proc. Combust. Inst. 32, 453 (2009)

    Article  Google Scholar 

  33. Y. Zhang, J. Cai, L. Zhao, J. Yang, H. Jin, Z. Cheng, Y. Li, L. Zhang, F. Qi, Combust. Flame 159, 905 (2012)

    Article  Google Scholar 

  34. W. Ren, D. Davidson, R. Hanson, Int. J. Chem. Kin. 44, 423 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge King Abdullah University of Science and Technology (KAUST) and Saudi Basic Industries Corporation (SABIC) for research funds towards this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Farooq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chrystie, R.S.M., Nasir, E.F. & Farooq, A. Propene concentration sensing for combustion gases using quantum-cascade laser absorption near 11 μm. Appl. Phys. B 120, 317–327 (2015). https://doi.org/10.1007/s00340-015-6139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6139-4

Keywords

Navigation