Skip to main content

Doppler-free intermodulated fluorescence spectroscopy of 4He 23P–31,3D transitions at 588 nm with a 1-W compact laser system


We have demonstrated Doppler-free intermodulated fluorescence spectroscopy of helium 23P–31,3D transitions in an rf-discharged sealed-off cell using a compact laser system at 588 nm. An external cavity diode laser at 1176 nm was constructed to seed a Raman fiber amplifier. Laser power of more than 1 W at 588 nm was produced by frequency doubling of the fiber amplifier output using a MgO:PPLN crystal. A doubling efficiency of 23 % was achieved. The power-dependent spectra of the 23P–33D transitions were investigated. Furthermore, the Doppler-free spectrum of the spin-forbidden 23P–31D transitions was observed for the first time. Our results are crucial toward precision test of QED atomic calculations, especially for improving the determination of the helium 31D–33D separation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. R. van Rooij, J.S. Borbely, J. Simonet, M.D. Hoogerland, K.S.E. Eikema, R.A. Rozendaal, W. Vassen, Science 333, 196 (2011)

    ADS  Article  Google Scholar 

  2. R.P.M.J.W. Notermans, W. Vassen, Phys. Rev. Lett. 112, 253002 (2014)

    ADS  Article  Google Scholar 

  3. P.-L. Luo, J.-L. Peng, J.-T. Shy, L.-B. Wang, Phys. Rev. Lett. 111, 013002 (2013); 111, 79901(E) (2013)

  4. C. Dorrer, F. Nez, B. de Beauvoir, L. Julien, F. Biraben, Phys. Rev. Lett. 78, 3658 (1997)

    ADS  Article  Google Scholar 

  5. P. Cancio Pastor, L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, V.A. Yerokhin, Pachucki. Phys. Rev. Lett. 108, 143001 (2012)

    ADS  Article  Google Scholar 

  6. C.J. Sansonetti, J.D. Gillaspy, Phys. Rev. A 45, R1 (1992)

    ADS  Article  Google Scholar 

  7. P. Mueller, L.-B. Wang, G.W.F. Drake, K. Bailey, Z.-T. Lu, T.P. O’Connor, Phys. Rev. Lett. 94, 133001 (2005)

    ADS  Article  Google Scholar 

  8. P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, M. Inguscio, Phys. Rev. Lett. 92, 023001 (2004); 97, 139903 (E) (2006)

  9. T. Zelevinsky, D. Farkas, G. Gabrielse, Phys. Rev. Lett. 95, 203001 (2005); 95, 219903 (E) (2005)

  10. J.S. Borbely, M.C. George, L.D. Lombardi, M. Weel, D.W. Fitzakerley, E.A. Hessels, Phys. Rev. A 79, 060503(R) (2009)

    ADS  Article  Google Scholar 

  11. M. Smiciklas, D. Shiner, Phys. Rev. Lett. 105, 123001 (2010)

    ADS  Article  Google Scholar 

  12. D. Shiner, R. Dixson, V. Vedantham, Phys. Rev. Lett. 74, 3553 (1995)

    ADS  Article  Google Scholar 

  13. D.C. Morton, Q. Wu, G.W.F. Drake, Phys. Rev. A 73, 034502 (2006)

    ADS  Article  Google Scholar 

  14. G.W.F. Drake, W. Nörtershäuser, Z.-C. Yan, Can. J. Phys. 83, 311 (2005)

    ADS  Article  Google Scholar 

  15. K. Pachucki, V.A. Yerokhin, Phys. Rev. Lett. 104, 070403 (2010)

    ADS  Article  Google Scholar 

  16. N. Ohtsubo, T. Aoki, Y. Torii, Opt. Lett. 37, 2865 (2012)

    ADS  Article  Google Scholar 

  17. T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, H. Guo, Opt. Lett. 38, 986 (2013)

    ADS  Article  Google Scholar 

  18. J.E. Lawler, A.I. Ferguson, J.E.M. Goldsmith, D.J. Jackson, A.L. Schawlow, Phys. Rev. Lett. 42, 1046 (1979)

    ADS  Article  Google Scholar 

  19. G. Chevalier, J.M. Gagn, P. Pianarosa, J. Opt. Soc. Am. B 5, 1492 (1988)

    ADS  Article  Google Scholar 

  20. C.J. Sansonetti, W.C. Martin, Phys. Rev. A 29, 159 (1984)

    ADS  Article  Google Scholar 

  21. B.A. Bushaw, W. Nörtershäuser, G.W.F. Drake, H.-J. Kluge, Phys. Rev. A 75, 052503 (2007)

    ADS  Article  Google Scholar 

  22. T. Fujimoto, A. Hirabayashi, S. Okuda, K. Shimizu, H. Takuma, J. Phys. B: At. Mol. Phys. 19, 571 (1986)

    ADS  Article  Google Scholar 

  23. D.C. Morton, Q. Wu, G.W.F. Drake, Can. J. Phys. 84, 83 (2006)

    ADS  Article  Google Scholar 

  24. A.Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, A. Kovsh, Appl. Phys. B 92, 501 (2008)

    ADS  Article  Google Scholar 

  25. X.P. Hu, P. Xu, S.N. Zhu, Photon. Res. 1, 171 (2013)

    Article  Google Scholar 

  26. L. Zhang, J. Hu, J. Wang, Y. Feng, Opt. Lett. 37, 4796 (2012)

    ADS  Article  Google Scholar 

  27. M.S. Sorem, A.L. Shawlow, Opt. Commun. 5, 148 (1972)

    ADS  Article  Google Scholar 

  28. P.J. Leo, G. Peach, I.B. Whittingham, J. Phys. B: At. Mol. Opt. Phys. 28, 591 (1995)

    ADS  Article  Google Scholar 

  29. K. Shimoda, High Resolution Spectroscopy, Vol. 13 of Topics in Applied Physics (Springer, Berlin, 1976)

    Google Scholar 

  30. Ph. Cahuzac, R. Damaschini, Opt. Commun. 20, 111 (1977)

    ADS  Article  Google Scholar 

  31. P.-L. Luo, Y.-C. Guan, J.-L. Peng, J.-T. Shy, L.-B. Wang, Phys. Rev. A 88, 054501 (2013)

    ADS  Article  Google Scholar 

  32. E.E. Eyler, D.E. Chieda, M.C. Stowe, M.J. Thorpe, T.R. Schibli, J. Ye, Eur. Phys. J. D 48, 43 (2008)

    ADS  Article  Google Scholar 

Download references


This project is supported by the Ministry of Science and Technology and the Ministry of Education of Taiwan. L.-B.W. receives support from Kenda Foundation as a Golden-Jade fellow.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Li-Bang Wang or Jow-Tsong Shy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, PL., Hu, J., Feng, Y. et al. Doppler-free intermodulated fluorescence spectroscopy of 4He 23P–31,3D transitions at 588 nm with a 1-W compact laser system. Appl. Phys. B 120, 279–284 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Stimulate Brillouin Scattering
  • External Cavity Diode Laser
  • Intercombination Transition
  • Raman Fiber Amplifier
  • Asymmetric Lineshape