Applied Physics B

, Volume 120, Issue 2, pp 223–232 | Cite as

A mid-infrared absorption diagnostic for acetylene detection

  • Utsav KC
  • Ehson F. Nasir
  • Aamir FarooqEmail author


Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm−1 over a wide range of temperatures (1000–2200 K) and pressures (1–5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene.


Mole Fraction Acetylene Shock Tube Absorption Cross Section Reflected Shock Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research reported in this paper was funded by King Abdullah University of Science and Technology (KAUST) and by Saudi Aramco under the FUELCOM program.


  1. 1.
    B. Atkana, A.T. Hartlieb, J. Brand, K. Kohse-Höinghaus, Symp. Int. Combust. 27, 435 (1998)CrossRefGoogle Scholar
  2. 2.
    N. Chai, S.V. Naik, W.D. Kulatilaka, N.M. Laurendeau, R.P. Lucht, S. Roy, J.R. Gord, Appl. Phys. B 87, 731 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    R. Lucht, R.L. Farrow, R.E. Palmer, Combust. Sci. Technol. 45, 261 (1986)CrossRefGoogle Scholar
  4. 4.
    A.V. Mokhov, S. Gersen, H.B. Levinsky, Chem. Phys. Lett. 403, 233 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    B.A. Williams, J.W. Fleming, Appl. Phys. B 75, 883 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Z.W. Sun, Z.S. Li, B. Li, Z.T. Alwahabi, M. Aldén, Appl. Phys. B Laser Opt. 101, 423 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    S. Wagner, B.T. Fisher, J.W. Fleming, V. Ebert, Proc. Combust. Inst. 32, 839 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Wagner, M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, V. Ebert, Appl. Phys. B 107, 585 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Scherer, K.W. Aniolek, N.P. Cernansky, D.J. Rakestraw, J. Chem. Phys. 107, 6196 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Z.R. Quine, K.L. McNesby, Appl. Opt. 48, 3075 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    I. Stranic, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 142, 58 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    R. El Hachtouki, J.V. Auwera, J. Mol. Spectrosc. 216, 355 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    T. Shimanouchi, Tables of molecular vibrational frequencies consolidated. 1, 1 (1972)Google Scholar
  15. 15.
    J. Vander Auwera, J. Mol. Spectrosc. 201, 143 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    J.J. Hillman, D.E. Jennings, G.W. Halsey, S. Nadler, W.E. Blass, J. Mol. Spectrosc. 146, 389 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    M.B. Sajid, T. Javed, A. Farooq, J. Quant. Spectrosc. Radiat. Transf. 155, 66 (2015)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law, USC Mech Version II. USC Mech High-temperature combustion reaction model of H2/CO/C1-C4 Compounds (2007).
  20. 20.
    S.W. Sharpe, R.L. Sams, T.J. Johnson, Applied imagery pattern recognition workshop proceedings 31, 45 (2002)Google Scholar
  21. 21.
    V. Gupta, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 67, 870 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111, 2139 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    I. Stranic, S.H. Pyun, D.F. Davidson, R.K. Hanson, Combust. Flame 159, 3242 (2012)CrossRefGoogle Scholar
  25. 25.
    I. Stranic, S.H. Pyun, D.F. Davidson, R.K. Hanson, Combust. Flame 160, 1012 (2013)CrossRefGoogle Scholar
  26. 26.
    T. Javed, E.F. Nasir, E.-T. Es-sebbar, A. Farooq, Fuel 140, 201 (2015)CrossRefGoogle Scholar
  27. 27.
    A. Farooq, D.F. Davidson, R.K. Hanson, C.K. Westbrook, Fuel 134, 26 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Division of Physical Sciences and Engineering, Clean Combustion Research Center (CCRC)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations