Skip to main content
Log in

Real-time infrared gas detection based on an adaptive Savitzky–Golay algorithm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Based on the Savitzky–Golay filter, we have developed in the present study a simple but robust method for real-time processing of tunable diode laser absorption spectroscopy (TDLAS) signals. Our method was developed to resolve the blindness of selecting the input filter parameters and to mitigate potential signal distortion induced in digital signal processing. Application of the developed adaptive Savitzky–Golay filter algorithm to the simulated and experimentally observed signals and comparison with the wavelet-based de-noising technique indicate that the newly developed method is effective in obtaining high-quality TDLAS data for a wide variety of applications including atmospheric environmental monitoring and industrial processing control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E.D. Hinkley, Appl. Phys. Lett. 15, 351 (1970)

    Article  ADS  Google Scholar 

  2. A. Fried, B. Henry, B. Wert, S. Sewell, J.R. Drummond, Appl. Phys. B 67, 317 (1998)

    Article  ADS  Google Scholar 

  3. G. Durry, J.S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, M. Liu, B. Parvitte, O. Korablev, M. Gerasimov, V. Zéninari, Appl. Phys. B 99, 339 (2010)

    Article  ADS  Google Scholar 

  4. J.S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, P.H. Flamant, F. Gibert, V. Zéninari, J. Quant. Spectrosc. Radiat. Transf. 112, 1411 (2011)

    Article  ADS  Google Scholar 

  5. J.S. Li, B. Yu, W. Zhao, W. Chen, Appl. Spectrosc. Rev. 49, 666 (2014)

    Article  ADS  Google Scholar 

  6. P. Werle, Spectrochim. Acta A 54, 197 (1998)

    Article  ADS  Google Scholar 

  7. L. Zhang, G. Tian, J. Li, B. Yu, Appl. Spectrosc. 68, 1095 (2014)

    Article  ADS  Google Scholar 

  8. P. Werle, P. Mazzinghi, F.D. Amato, M. De Rosa, K. Maurer, F. Slemr, Spectrochim. Acta Part A 60, 1685 (2004)

    Article  ADS  Google Scholar 

  9. P. Werle, R. Mucke, F. Slemr, Appl. Phys. B 57, 131 (1993)

    Article  ADS  Google Scholar 

  10. J.S. Li, U. Parchatka, H. Fischer, Appl. Phys. B 108, 951 (2012)

    Article  ADS  Google Scholar 

  11. J. Chen, P. Jönsson, M. Tamura, Z. Gu, B. Matsushita, L. Eklundh, Remote Sens. Environ. 91, 332 (2004)

    Article  Google Scholar 

  12. M.A. Czarnecki, Appl. Spectrosc. 69, 67 (2015)

    Article  ADS  Google Scholar 

  13. R. Jiménez, M. Taslakov, V. Simeonov, B. Calpini, F. Jeanneret, D. Hofstetter, M. Beck, J. Faist, H. Van Den Bergh, Appl. Phys. B 78, 249 (2004)

    Article  ADS  Google Scholar 

  14. J. Luo, K. Ying, P. He, J. Bai, Digit. Signal Process. 15, 122 (2005)

    Article  Google Scholar 

  15. G. Glannelli, O. Altamura, Rev. Sci. Instrum. 47, 32 (1976)

    Article  ADS  Google Scholar 

  16. T.H. Edwards, P.D. Willson, Appl. Spectrosc. 28, 541 (1974)

    Article  ADS  Google Scholar 

  17. C.G. Enke, T.A. Niernan, Anal. Chem. 48, 705A (1976)

    Article  Google Scholar 

  18. H.H. Madden, Anal. Chem. 50, 1383 (1978)

    Article  Google Scholar 

  19. G. Vivó-Truyols, P.J. Schoenmakers, Anal. Chem. 78, 4598 (2006)

    Article  Google Scholar 

  20. M. Browne, N. Mayer, T.R.H. Cutmore, Digit. Signal Process. 17, 69 (2007)

    Article  Google Scholar 

  21. A. Savitzky, M.J.E. Golay, Anal. Chem. 36, 1627 (1964)

    Article  ADS  Google Scholar 

  22. J. Steinier, Y. Termonia, J. Deltour, Anal. Chem. 44, 1906 (1972)

    Article  Google Scholar 

  23. P.D. Willson, T.H. Edwards, Appl. Spectrosc. Rev. 12, 1 (1976)

    Article  ADS  Google Scholar 

  24. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk et al., J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)

    Article  ADS  Google Scholar 

  25. J.S. Li, B. Yu, H. Fischer, Appl. Spectrosc. 69, 496 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Anhui University personnel recruiting project of academic and technical leaders (Grant No. 10117700014), the Natural Science Fund of Anhui Province under Grant 1508085MF118, the National Natural Science Foundation of China under Grant 61440010, and the key Science and Technology Development Program of Anhui Province under Grant 1501041136. We thank two anonymous reviewers and editors for their useful comments on the manuscript. Special thanks go to Prof. A.P. Yalin (Colorado State University) for his helpful discussion and careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Deng, H., Li, P. et al. Real-time infrared gas detection based on an adaptive Savitzky–Golay algorithm. Appl. Phys. B 120, 207–216 (2015). https://doi.org/10.1007/s00340-015-6123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6123-z

Keywords

Navigation