Skip to main content
Log in

Generation of optical frequency combs via four-wave mixing processes for low- and medium-resolution astronomy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate the generation of optical frequency combs through a cascade of four-wave mixing processes in nonlinear fibres with optimised parameters. The initial optical field consists of two continuous-wave lasers with frequency separation larger than 40 GHz (312.7 pm at 1531 nm). It propagates through three nonlinear fibres. The first fibre serves to pulse shape the initial sinusoidal-square pulse, while a strong pulse compression down to sub-100 fs takes place in the second fibre which is an amplifying erbium-doped fibre. The last stage is a low-dispersion highly nonlinear fibre where the frequency comb bandwidth is increased and the line intensity is equalised. We model this system using the generalised nonlinear Schrödinger equation and investigate it in terms of fibre lengths, fibre dispersion, laser frequency separation and input powers with the aim to minimise the frequency comb noise. With the support of the numerical results, a frequency comb is experimentally generated, first in the near infra-red and then it is frequency-doubled into the visible spectral range. Using a MUSE-type spectrograph, we evaluate the comb performance for astronomical wavelength calibration in terms of equidistancy of the comb lines and their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. S. T. Cundiff, J. Yen, Rev. Mod. Phys. 75, 325 (2003)

    Article  ADS  Google Scholar 

  2. J.M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, Opt. Express 17(24), 21497–21508 (2009)

    Article  ADS  Google Scholar 

  3. G. Yang, L. Li, S. Jia, D. Michaleche, Rom. Rep. Phys. 65(3), 902–914 (2013)

    Google Scholar 

  4. S. Pitois, J. Fatome, G. Millot, Opt. Lett. 27(19), 1729–1731 (2002)

    Article  ADS  Google Scholar 

  5. C. Finot, J. Fatome, S. Pitois, G. Millot, IEEE Photonics Technol. Lett. 19(21), 1711 (2007)

    Article  ADS  Google Scholar 

  6. C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, G. Millot, Laser Phys. Lett. 5(11), 817–820 (2008)

    Article  ADS  Google Scholar 

  7. J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, E. Samain, Transparent Optical Networks, ICTON’09 (2009)

  8. I. El Mansouri, J. Fatome, C. Finot, M. Lintz, S. Pitois, IEEE Photon. Technol. Lett. 23(20), 1487–1489 (2011)

    Article  Google Scholar 

  9. J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, E. Samain, Opt. Commun. 283, 2425 (2010)

    Article  ADS  Google Scholar 

  10. K.E. Webb, M. Erkintalo, Y. Xu, N.G.R. Broderick, J.M. Dudley, G. Genty, S.G. Murdoch, Nat. Commun. 5 (2014)

  11. K. Griest, J.B. Whitmore, A.M. Wolfe, J.X. Prochaska, J.C. Howk, G.W. Marcy, Astrophys. J. 708, 158–170 (2010)

    Article  ADS  Google Scholar 

  12. S. Osterman, S. Diddams, M. Beasley, C. Froning, L. Hollberg, P. MacQueen, V. Mbele, A. Weiner, Proc. SPIE 6693 (2007)

  13. S. Osterman, G.G. Ycas, S.A. Diddams, F. Quinlan, S. Mahadevan, L. Ramsey, C.F. Bender, R. Terrien, B. Botzer, S. Sigurdsson, S.L. Redman, Proc. SPIE 8450 (2012)

  14. G.G. Ycas, F. Quinlan, S.A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C.F. Bender, B. Botzer, S. Sigurdsson, Opt. Express 20(6), 6631–6643 (2012)

    Article  ADS  Google Scholar 

  15. A. Loeb, Astrophys. J. 499, L111–L114 (1998)

    Article  ADS  Google Scholar 

  16. W.L. Freedman, Proc. Natl. Acad. Sci. USA 95(1),  2–7 (1998)

    Article  ADS  Google Scholar 

  17. M.T. Murphy, C.R. Locke, P.S. Light, A.N. Luiten, J.S. Lawrence, Mon. Not. R. Astron. Soc. 000 (2012)

  18. D.F. Phillips, A.G. Glenday, C.-H. Li, C. Cramer, G. Furesz, G. Chang, A.J. Benedick, L.-J. Chen, F.X. Kärtner, S. Korzennik, D. Sasselov, A. Szentgyorgyi, R.L. Walsworth, Opt. Express 20(13), 13711–13726 (2012)

    Article  ADS  Google Scholar 

  19. M.T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D’Odorico, M. Fischer, T.W. Hänsch, A. Manescau, Mon. Not. R. Astron. Soc. 380(2), 839 (2007)

    Article  ADS  Google Scholar 

  20. D.A. Braje, M.S. Kirchner, S. Osterman, T. Fortier, A. Diddams, Eur. Phys. J. D 48(1), 57–66 (2008)

    Article  ADS  Google Scholar 

  21. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, Proc. SPIE 7735 (2010)

  22. T. Steinmetz, T. Wilken, A. Araujo-Hauck, R. Holzwarth, T.W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M.T. Murphy, T. Kentischer, W. Schmidtt, T. Udem, Science 321(5894), 1335–1337 (2008)

    Article  ADS  Google Scholar 

  23. H.-P. Doerr, T.J. Kentischer, T. Steinmetz, R.A. Probst, M. Franz, R. Holzwarth, T. Udem, T.W. Hänsch, W. Schmidt, Proc. SPIE 8450 (2012)

  24. G. Lo Curto, A. Manescau, G. Avila, L. Pasquini, T. Wilken, T. Steinmetz, R. Holzwarth, R. Probst, T. Udem, T.W. Hänsch, Proc. SPIE 8446 (2012)

  25. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, Nature 450, 1214–1217 (2007)

  26. P. Del’Haye, T. Herr, E. Gavartin, M.L. Gorodetsky, R. Holzwarth, T.J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011)

    Article  ADS  Google Scholar 

  27. S.V. Chernikov, E.M. Payne, Appl. Phys. Lett. 63, 293–295 (1993)

    Article  ADS  Google Scholar 

  28. Z. Tong, A.O.J. Wiberg, E. Myslivets, B.P.P. Kuo, N. Alic, S. Radic, Opt. Express 20(16), 17610–17619 (2012)

    Article  ADS  Google Scholar 

  29. E. Myslivets, B.P.P. Kuo, N. Alic, S. Radic, Opt. Express 20(3), 3331–3344 (2012)

    Article  ADS  Google Scholar 

  30. T. Yang, J. Dong, S. Liao, D. Huang, X. Zhang, Opt. Express 21(7), 8508–8520 (2013)

    Article  ADS  Google Scholar 

  31. J.M.C. Boggio, A.A. Rieznik, M. Zajnulina, M. Böhm, D. Bodenmüller, M. Wysmolek, H. Sayinc, J. Neumann, D. Kracht, R. Haynes, M.M. Roth, Proc. SPIE 8434 (2012)

  32. M. Zajnulina, J.M.C. Boggio, A.A. Rieznik, R. Haynes, M.M. Roth, Proc. SPIE 8775 (2013)

  33. M. Zajnulina, M. Böhm, K. Blow, J.M.C. Boggio, A.A. Rieznik, R. Haynes, M.M. Roth, Proc. SPIE 9151 (2014)

  34. W. Cao, P.K.A. Wai, Opt. Commun. 221, 181–190 (2003)

    Article  ADS  Google Scholar 

  35. S.V. Chernikov, E.M. Dianov, Opt. Lett. 18(7), 476–478 (1993)

    Article  ADS  Google Scholar 

  36. Q. Li, J.N. Kunz, P.K.A. Wai, J. Opt. Soc. Am. B 27(11) (2010)

  37. P. Colman, C. Husko, S. Combrie, I. Sagnes, C.W. Wong, A. De Rossi, Nat. Photon. 4, 862–868 (2010)

    Article  ADS  Google Scholar 

  38. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, London, 2013)

    Google Scholar 

  39. S.M. Kobtsev, S.V. Smirnov, Opt. Express 16(10), 7428–7434 (2008)

    Article  ADS  Google Scholar 

  40. S.M. Kobtsev, S.V. Smirnov, Opt. Express 14(9), 3968–3980 (2006)

    Article  ADS  Google Scholar 

  41. S.M. Kobtsev, S.V. Smirnov, Opt. Express 13(18), 6912–6918 (2005)

    Article  ADS  Google Scholar 

  42. J.R. Taylor, Optical Solitons: Theory and Experiment (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  43. S. Balac, Fernandez, F. Mahe, F. Mehats, R. Texier-Picard, HAL 00850518v1 (2013)

  44. A.S. Cerqueira Jr., J.M.C. Boggio, A.A. Rieznik, H.E. Hernandez-Figueroa, H.L. Fragnito, J.C. Knight, Opt. Express 16(4), 2816–2828 (2008)

    Article  ADS  Google Scholar 

  45. N.F. Smyth, Opt. Commun. 175, 469–475 (2000)

    Article  ADS  Google Scholar 

  46. L.F. Mollenhauer, R.H. Stolen, J.P. Gordon, W.J. Tomlinson, Opt. Lett. 8(5) (1983)

  47. H.A. Haus, IEEE Spectrum 30(3), 48–53(1993)

    Article  Google Scholar 

  48. A.A. Voronin, A.M. Zheltikov, Phys. Rev. A 78(6), 063834 (2008)

    Article  ADS  Google Scholar 

  49. T. Inoue, S. Namiki, Laser Photon. Rev. 2(1), 83–99 (2008)

    Article  Google Scholar 

  50. S.A.S. Melo, A.S. Cerqueira Jr., A.R. do Nascimento Jr., L.H.H. Carvalho, R. Silva, J.C.R.F. Oliveira, Revista Telecomunicacoes 15(2), 43–47 (2013)

    Google Scholar 

  51. G.P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, London, 2008)

    Google Scholar 

  52. F. Mitschke, Fiber Optics. Physics and Technology (Springer, Berlin, 2009)

    Google Scholar 

  53. R.S. de Jong et al. Proc.SPIE 8446 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zajnulina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zajnulina, M., Boggio, J.M.C., Böhm, M. et al. Generation of optical frequency combs via four-wave mixing processes for low- and medium-resolution astronomy. Appl. Phys. B 120, 171–184 (2015). https://doi.org/10.1007/s00340-015-6121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6121-1

Keywords

Navigation