Skip to main content
Log in

All-electronic line width reduction in a semiconductor diode laser using a crystalline microresonator

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This study examines the capability to significantly suppress the frequency noise of a semiconductor distributed feedback diode laser using a universally applicable approach: a combination of a high-Q crystalline whispering gallery mode microresonator reference and the Pound–Drever–Hall locking scheme using an all-electronic servo loop. An out-of-loop delayed self-heterodyne measurement system demonstrates the ability of this approach to reduce a test laser’s absolute line width by nearly a factor of 100. In addition, in-loop characterization of the laser stabilized using this method demonstrates a 1-kHz residual line width with reference to the resonator frequency. Based on these results, we propose that utilization of an all-electronic loop combined with the use of the wide transparency window of crystalline materials enable this approach to be readily applicable to diode lasers emitting in other regions of the electromagnetic spectrum, especially in the UV and mid-IR .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Ohtsu, Highly Coherent Semiconductor Lasers (Artech House, Boston, 1992)

    Google Scholar 

  2. A. Schoof, J. Grünert, S. Ritter, A. Hemmerich, Opt. Lett. 26(20), 1562 (2001). doi:10.1364/OL.26.001562

    Article  ADS  Google Scholar 

  3. M.S. Taubman, T.L. Myers, B.D. Cannon, R.M. Williams, F. Capasso, C. Gmachl, D.L. Sivco, A.Y. Cho, Opt. Lett. 27(24), 2164 (2002). doi:10.1364/OL.27.002164

    Article  ADS  Google Scholar 

  4. J.F. Cliche, Y. Painchaud, C. Latrasse, M.J. Picard, I. Alexandre, M. Têtu, in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, Washington, 2007), p. BTuE2. doi:10.1364/BGPP.2007.BTuE2. http://www.opticsinfobase.org/abstract.cfm?URI=BGPP-2007-BTuE2

  5. F. Cappelli, I. Galli, S. Borri, G. Giusfredi, P. Cancio, D. Mazzotti, A. Montori, N. Akikusa, M. Yamanishi, S. Bartalini, P.D. Natale, Opt. Lett. 37(23), 4811 (2012). doi:10.1364/OL.37.004811

    Article  ADS  Google Scholar 

  6. C.E. Wieman, L. Hollberg, Rev. Sci. Instr. 62(1), 1 (1991). doi:10.1063/1.1142305

    Article  ADS  Google Scholar 

  7. V.V. Vassiliev, V.L. Velichansky, V.S. Ilchenko, M.L. Gorodetsky, L. Hollberg, A.V. Yarovitsky, Opt. Commun. 158(December), 305 (1998)

    Article  ADS  Google Scholar 

  8. W. Liang, V.S. Ilchenko, A.A. Savchenkov, A.B. Matsko, D. Seidel, L. Maleki, Opt. Lett. 35(16), 2822 (2010). doi:10.1364/OL.35.002822

    Article  Google Scholar 

  9. S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, P.D. Natale, Opt. Lett. 37(6), 1011 (2012). doi:10.1364/OL.37.001011

    Article  ADS  Google Scholar 

  10. Y. Zhao, Q. Wang, F. Meng, Y. Lin, S. Wang, Y. Li, B. Lin, S. Cao, J. Cao, Z. Fang, T. Li, E. Zang, Opt. Lett. 37(22), 4729 (2012). doi:10.1364/OL.37.004729

    Article  ADS  Google Scholar 

  11. M.R. Chitgarha, S. Khaleghi, M. Ziyadi, A. Mohajerin-Ariaei, A. Almaiman, W. Daab, D. Rogawski, M. Tur, J.D. Touch, C. Langrock, M.M. Fejer, A.E. Willner, Opt. Lett. 39(10), 2928 (2014). doi:10.1364/OL.39.002928

    Article  ADS  Google Scholar 

  12. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31(2), 97 (1983)

    Article  ADS  Google Scholar 

  13. A. Matsko, V. Ilchenko, IEEE J. Quantum Electron. 12(1), 3 (2006). doi:10.1109/JSTQE.2005.862952

    Article  Google Scholar 

  14. K. Vahala, Nature 424(6950), 839 (2003). doi:10.1038/nature01939

    Article  ADS  Google Scholar 

  15. G. Lin, J. Fürst, D.V. Strekalov, I.S. Grudinin, N. Yu, Opt. Express 20(19), 21372 (2012). doi:10.1364/OE.20.021372

    Article  ADS  Google Scholar 

  16. T. Le, S.J. Schowalter, W. Rellergert, J. Jeet, G. Lin, N. Yu, E.R. Hudson, Opt. Lett. 37(23), 4961 (2012). doi:10.1364/OL.37.004961

    Article  ADS  Google Scholar 

  17. A.A. Savchenkov, V.S. Ilchenko, A.B. Matsko, L. Maleki, Phys. Rev. A 70, 051804 (2004). doi:10.1103/PhysRevA.70.051804

    Article  ADS  Google Scholar 

  18. I.S. Grudinin, A.B. Matsko, A.A. Savchenkov, D. Strekalov, V.S. Ilchenko, L. Maleki, Opt. Commun. 265(1), 33 (2006). doi:10.1016/j.optcom.2006.03.028

    Article  ADS  Google Scholar 

  19. K. Mansour, A.S. Rury, I.S. Grudinin, N. Yu, Proc. SPIE 8960, 89600Y (2014). doi:10.1117/12.2042218

    ADS  Google Scholar 

  20. M. Zhu, J.L. Hall, J. Opt. Soc. Am. B 10(5), 802 (1993). doi:10.1364/JOSAB.10.000802

    Article  ADS  Google Scholar 

  21. J. Alnis, A. Schliesser, C.Y. Wang, J. Hofer, T.J. Kippenberg, T.W. Hänsch, Phys. Rev. A 84, 011804 (2011). doi:10.1103/PhysRevA.84.011804

    Article  ADS  Google Scholar 

  22. I. Fescenko, J. Alnis, A. Schliesser, C.Y. Wang, T.J. Kippenberg, T.W. Hänsch, Opt. Express 20(17), 19185 (2012). doi:10.1364/OE.20.019185

    Article  ADS  Google Scholar 

  23. L.M. Baumgartel, R.J. Thompson, N. Yu, Opt. Express 20(28), 29798 (2012)

    Article  ADS  Google Scholar 

  24. T. Okoshi, K. Kikuchi, A. Nakayama, Elec. Lett. 16(16), 630 (1980)

    Article  ADS  Google Scholar 

  25. D.S. Elliott, R. Roy, S.J. Smith, Phys. Rev. A 26, 12 (1982)

    Article  ADS  Google Scholar 

  26. M.C. Collodo, F. Sedlmeir, B. Sprenger, S. Svitlov, L.J. Wang, H.G.L. Schwefel, Opt. Express 22(16), 2822 (2014). doi:10.1364/OE.22.01914119277

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Lukas Baumgartel and Ivan Grudinin for useful discussions and support with the lasers used in this study. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Also authors would like to acknowledge the California Institute of Technology and its Government sponsorship.

Conflict of interest

The authors declare no competing financial interest or other conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron S. Rury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rury, A.S., Mansour, K. & Yu, N. All-electronic line width reduction in a semiconductor diode laser using a crystalline microresonator. Appl. Phys. B 120, 155–160 (2015). https://doi.org/10.1007/s00340-015-6118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6118-9

Keywords

Navigation