Skip to main content

Advertisement

Log in

Investigation of the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot using simultaneous 2-Colour-TIRE-LII

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The response of non-premixed swirling flames to acoustic perturbations at various frequencies (0–350 Hz) and the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot are investigated. The results obtained from these flames are of special interest for “rich-quenched-lean” (RQL) combustion concepts applied in modern gas turbines. In RQL combustion, the fuel is initially oxidized by air under fuel-rich conditions in a first stage followed by a fuel-lean combustion step in a second stage. To mimic soot formation and oxidation in RQL combustion, soot particle measurements in highly turbulent, non-premixed swirling natural gas/ethylene-confined flames at imposed air inlet velocity oscillations are performed using simultaneous 2-Colour-Time-Resolved-Laser-Induced Incandescence (simultaneous 2-Colour-TIRE-LII). The latter technique is combined with line-of-sight averaged OH*-chemiluminescence imaging, measurements of the velocity field by high-speed particle imaging velocimetry under reactive combustion conditions and measurements of the mean temperature field obtained by a thermocouple. A natural gas/ethylene mixture (Φ = 1.56, 42 % C2H4, 58 % natural gas, P th = 17.6 kW at atmospheric pressure) is used as a fuel, which is oxidized by air under fuel-rich conditions in the first combustion chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. H. Bockhorn, A. D’Anna, A.F. Sarofim, H. Wang, Combustion Generated Fine Carbonaceous Particles, Proceedings of an International Workshop, Villa Orlandi, Anacapri (2007)

  2. H. Bockhorn, Soot Formation in Combustion: Mechanism and Models (Springer, Berlin, 1994)

    Book  Google Scholar 

  3. C.S. McEnally, L.D. Pfefferle, B. Atakan, K. Kohse-Höinghaus, Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap. Prog. Energy Combust. Sci. 32(3), 247–294 (2006). doi:10.1016/j.pecs.2005.11.003

    Article  Google Scholar 

  4. R. Balachandran, B.O. Ayoola, C.F. Kaminski, A.P. Dowling, E. Mastorakos, Combust. Flame 143, 37–55 (2005)

    Article  Google Scholar 

  5. O.A. Ezekoye, K.M. Martin, F. Bisetti, Proc. Combust. Inst. 30, 1485–1492 (2005)

    Article  Google Scholar 

  6. Uyi Idahosa, Abhishek Saha, Xu Chengying, Saptarshi Basu, Combust. Flame 157, 1800–1814 (2010)

    Article  Google Scholar 

  7. Th. Lehre, R. Suntz, H. Bockhorn, Time-resolved two-color LII: size distributions of nano-particles from gas-to-particle synthesis, in 30th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 2585 (2005)

  8. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021 (2003)

    Article  ADS  Google Scholar 

  9. T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055 (2003)

    Article  Google Scholar 

  10. M. Charwath, Experimentelle Untersuchung und numerische Simulation der Rußbildung in laminaren Methan/Luft Diffusionsflammen, Dissertation, Karlsruhe Institute of Technology (KIT), (2011)

  11. E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Determination of the ratio of soot refractive index function E(m) at the two wavelengths 532 and 1064 nm by laser induced incandescense. Appl. Phys. B 89, 417–427 (2007)

    Article  ADS  Google Scholar 

  12. M.H. de Andrade Oliveira, N.-E. Olofsson, J. Johnsson, H. Bladh, A. Lantz, B. Li, Z.S. Li, M. Alden, P.-E. Bengtsson, C.C.M. Luijten, L.P.H. de Goey, Soot, PAH and OH measurements in vaporized liquid fuel flames. Fuel 112, 145–152 (2013)

    Article  Google Scholar 

  13. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333–354 (2006)

    Article  ADS  Google Scholar 

  14. D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity. Appl. Opt. 44, 6773–6785 (2005)

    Article  ADS  Google Scholar 

  15. T.P. Jenkins, R.K. Hanson, Combust. Flame 126, 1669 (2001)

    Article  Google Scholar 

  16. M. Kerker, The Scattering of Light and other Electromagnetic Radiation (Academic Press, New York, 1969)

    Google Scholar 

  17. W.H. Dalzell, A.F. Sarofim, J. Heat Transf. 91, 161 (1969)

    Article  Google Scholar 

  18. S. C. Lee, C. L. Tien, in 18th Symposium (Int.) on Combustion, The Combustion Inst., Pittsburgh (1981), pp. 1159–1166

  19. B.J. Stagg, T.T. Charalampopoulos, Combust. Flame 94, 381 (1993)

    Article  Google Scholar 

  20. J. Simonsson, N.-E. Olofsson, S. Török, P.-E. Bengtsson, H. Bladh, Wavelength dependence of extinction in sooting flat premixed flames in the visible and near-infrared regimes. Appl. Phys. B (2015). doi:10.1007/s00340-015-6079-z

    Google Scholar 

  21. N.-E. Olofsson, J. Simonsson, S. Török, H. Bladh, P.-E. Bengtsson, Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering. Appl. Phys. B (2015). doi:10.1007/s00340-015-6067-3

    Google Scholar 

  22. M. Raffael, Chris E. Willert, Steve T. Wereley, J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, Berlin, 1998 /2007 2nd ed.)

  23. W. Merzkirch, Flow Visualization (Academic Press, Orlando, 1987)

  24. J. Westerweel, Digital particle image velocimetry—theory and application, PhD Dissertation, Delft University Press, Delft (1993)

  25. C. M. Arndt, M. Severin, C. Dem, M. Stöhr, A. M. Steinberg, W. Meier, Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence and laser Raman scattering measurements, in Experiments in Fluids, Experimental Methods and their Applications to Fluid Flow (Springer, Berlin, 2015). doi:10.1007/s00348-015-1929-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Suntz.

Appendix: Nomenclature

Appendix: Nomenclature

Latin symbols

c:

Speed of light 3 × 108 (m/s)

E(m):

Complex refractive index function for absorption (–)

f v :

Soot particle volume fraction (–)

h :

Planck’s constant 6.6256 × 10−34 (J s)

I :

LII signal intensity (W/m3)

k B :

Boltzmann’s constant 1.3806 × 10−23 (J/K)

K cal :

Calibration constant (–)

L :

Length (m)

m :

Refractive index of soot (–)

Greek letters

ε :

Spectral emissivity of soot layer (–)

λ :

Wavelength (m)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A., Suntz, R. & Bockhorn, H. Investigation of the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot using simultaneous 2-Colour-TIRE-LII. Appl. Phys. B 119, 777–795 (2015). https://doi.org/10.1007/s00340-015-6117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6117-x

Keywords

Navigation