Skip to main content
Log in

Laser–plasma interaction and plasma enhancement by ultrashort double-pulse ablation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study, the laser–plasma interaction and the resultant plasma enhancement by ultrashort double-pulse ablation of silicon are investigated. It is found that by carefully selecting inter-pulse delay, the plasma temperature and electron number density can be effectively increased, compared to the case of single-pulse ablation. The strong plasma enhancement is observed at long-pulse delay (above 20 ps), companied by the ablation rate suppression. At short-pulse delay (below 20 ps), strong ablation rate enhancement is observed, with no plasma enhancement. The spatial analysis of plasma temperature shows that the second pulse energy is mainly absorbed by the front portion of the plasma, where the temperature is increased the most. The plasma reheating leads to a faster expansion of the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Scaffidi, J. Pender, W. Pearman, S.R. Goode, B.W. Colston Jr, J.C. Carter, S.M. Angel, Appl. Opt. 42, 6099–6106 (2003)

    Article  ADS  Google Scholar 

  2. K.L. Eland, D.N. Stratis, D.M. Gold, S.R. Goode, S.M. Angel, Appl. Spectrosc. 55, 286–290 (2001)

    Article  ADS  Google Scholar 

  3. J. Scaffidi, S.M. Angel, D.A. Cremers, Anal. Chem. 78, 24–32 (2006)

    Article  Google Scholar 

  4. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, Spectrochim. Acta, Part B 55, 1771–1785 (2000)

    Article  ADS  Google Scholar 

  5. E. Miura, H. Honda, K. Katsura, E. Takahashi, K. Kondo, in Proceedings of SPIE, vol 3886, pp. 320–330 (2000)

  6. A. Rousse, K.T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J. Rousseau, D. Umstadter, D. Hulin, Phys. Rev. Lett. 93, 135005 (2004)

    Article  ADS  Google Scholar 

  7. J. Zhou, J. Peatross, M.M. Murnane, H.C. Kapteyn, I.P. Christov, Phys. Rev. Lett. 76, 752 (1996)

    Article  ADS  Google Scholar 

  8. P. Li, S. Chu, Phys. Rev. A 88, 053415 (2013)

    Article  ADS  Google Scholar 

  9. M.H. Key, Nature 412, 775–776 (2001)

    Article  ADS  Google Scholar 

  10. R. Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azechi, H. Fujita, H. Habara, T. Hall, Y. Izawa, T. Jitsuno, Y. Kitagawa, K.M. Krushelnick, K.L. Lancaster, K. Mima, K. Nagai, M. Nakai, H. Nishimura, T. Norimatsu, P.A. Norreys, S. Sakabe, K.A. Tanaka, A. Youssef, M. Zepf, T. Yamanaka, Nature 418, 933–9344 (2002)

    Article  ADS  Google Scholar 

  11. L.O. Silva, M. Marti, J.R. Davies, R.A. Fonseca, C. Ren, F.S. Tsung, W.B. Mori, Phys. Rev. Lett. 92, 015002 (2004)

    Article  ADS  Google Scholar 

  12. E.L. Clark, K. Krushelnick, J.R. Davies, M. Zepf, M. Tatarakis, F.N. Beg, A. Machacek, P.A. Norreys, M.I.K. Santala, I. Watts, A.E. Dangor, Phys. Rev. Lett. 84, 670–673 (2000)

    Article  ADS  Google Scholar 

  13. Z. Hou, Z. Wang, J. Liu, W. Ni, Z. Li, Opt. Express 21, 15974–15979 (2013)

    Article  ADS  Google Scholar 

  14. Z. Wang, Z. Hou, S.-L. Lui, D. Jiang, J. Liu, Z. Li, Opt. Express 20, A1011–A1018 (2012)

    Article  ADS  Google Scholar 

  15. X. Liu, S. Sun, X. Wang, Z. Liu, Q. Liu, P. Ding, Z. Guo, B. Hu, Opt. Express 21, A704 (2013)

    Article  ADS  Google Scholar 

  16. S.S. Harilal, P.K. Diwakar, A. Hassanein, Appl. Phys. Lett. 103, 041102 (2013)

    Article  ADS  Google Scholar 

  17. J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, T. Baumert, Appl. Surf. Sci. 302, 291–298 (2013)

    Article  ADS  Google Scholar 

  18. V. Piñon, D. Anglos, Spectrochim. Acta, Part B 64, 950–960 (2009)

    Article  ADS  Google Scholar 

  19. A. Semerok, C. Dutouquet, Thin Solid Films 453–454, 501–505 (2004)

    Article  Google Scholar 

  20. D. Scuderi, O. Albert, D. Moreau, P.P. Pronko, J. Etchepare, Appl. Phys. Lett. 86, 071502 (2005)

    Article  ADS  Google Scholar 

  21. S. Amoruso, R. Bruzzese, X. Wang, G. O’Connell, J.G. Lunney, J. Appl. Phys. 108, 113302 (2010)

    Article  ADS  Google Scholar 

  22. K. Amal, S.H. Elnaby, V. Palleschi, A. Salvetti, M.A. Harith, Appl. Phys. B 83, 651–657 (2006)

    Article  ADS  Google Scholar 

  23. Y. Qi, H. Qi, Q. Wang, Z. Chen, Z. Hu, Opt. Laser Technol. 66, 68–77 (2015)

    Article  ADS  Google Scholar 

  24. J.T. Schiffern, D.W. Doerr, D.R. Alexander, Spectrochim. Acta, Part B 62, 1412–1418 (2007)

    Article  ADS  Google Scholar 

  25. Z. Hu, S. Singha, Y. Liu, R.J. Gordon, Appl. Phys. Lett. 90, 131910 (2007)

    Article  ADS  Google Scholar 

  26. S. Singha, Z. Hu, R.J. Gordon, J. Appl. Phys. 104, 113520 (2008)

    Article  ADS  Google Scholar 

  27. T. Donnelly, J.G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, X. Ni, J. Appl. Phys. 106, 013304 (2009)

    Article  ADS  Google Scholar 

  28. S. Amoruso, R. Bruzzese, X. Wang, N.N. Nedialkov, P.A. Atanasov, J. Phys. D Appl. Phys. 40, 331 (2007)

    Article  ADS  Google Scholar 

  29. S. Amoruso, R. Bruzzese, X. Wang, J. Xia, Appl. Phys. Lett. 93, 191504 (2008)

    Article  ADS  Google Scholar 

  30. M.E. Povarnitsyn, T.E. Itina, M. Sentis, K.V. Khishchenko, P.R. Levashov, Phys. Rev. B 75, 235414 (2007)

    Article  ADS  Google Scholar 

  31. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, L. Lanotte, Appl. Phys. Lett. 84, 4502 (2004)

    Article  ADS  Google Scholar 

  32. A. Semerok, C. Dutouquet, Thin Solid Films 453–454, 501 (2004)

    Article  Google Scholar 

  33. M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Phys. Rev. Lett. 103, 195002 (2009)

    Article  ADS  Google Scholar 

  34. D. Perez, L.K. Béland, D. Deryng, L.J. Lewis, M. Meunier, Phys. Rev. B 77, 014108 (2008)

    Article  ADS  Google Scholar 

  35. T.Y. Choi, D.J. Hwang, C.P. Grigoropoulos, Appl. Surf. Sci. 197–198, 720–725 (2002)

    Article  Google Scholar 

  36. X. Zhao, Y. Shin, Appl. Phys. Lett. 105, 111907 (2014)

    Article  ADS  Google Scholar 

  37. H.R. Griem, Plasma Spectroscopy (McGraw-Hill Inc, New York, 1964)

    Google Scholar 

  38. W. Lochte-Holtgreven, Plasma Diagnostics (North-Hol-land, Amsterdam, 1968)

    Google Scholar 

  39. A.W. Miziolek, V. Palleschi, I. Schechter, Laser-induced breakdown spectroscopy (LIBS): fundamentals and applications (Cambridge University Press), Cambridge, 2006)

    Book  Google Scholar 

  40. A. Fridman, L.A. Kennedy, Plasma Physics and Engineering (Taylor and Francis), New York, 2004)

    Book  Google Scholar 

  41. V.K. Unnikrishnan, K. Alti, V.B. Kartha, C. Santhosh, G.P. Gupta, B.M. Suri, Pramana J. Phys. 74(6), 983–993 (2010)

    Article  ADS  Google Scholar 

  42. X. Zeng, X. Mao, S.S. Mao, J.H. Yoo, R. Greif, R.E. Russo, J. Appl. Phys. 95(3), 816 (2004)

    Article  ADS  Google Scholar 

  43. NIST Atomic Spectra Database, http://www.nist.gov/pml/data/asd.cfm

  44. B. Zmerli, N. Ben Nessib, M.S. Dimitrijevic, S. Sahal-Bréchot, Phys. Scr. 82, 055301 (2010)

    Article  ADS  Google Scholar 

  45. W. Hu, Y.C. Shin, G.B. King, Phys. Plasmas 18, 093302 (2011)

    Article  ADS  Google Scholar 

  46. S. Amoruso, R. Bruzzese, X. Wang, Appl. Phys. Lett. 95, 251501 (2009)

    Article  ADS  Google Scholar 

  47. M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, C. Vallebona, Spectrochim. Acta Part B 59, 723–735 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to gratefully acknowledge the financial support provided for this study by the National Science Foundation (Grant No CMMI-1030786 and CMMI-1300930).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung C. Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Shin, Y.C. Laser–plasma interaction and plasma enhancement by ultrashort double-pulse ablation. Appl. Phys. B 120, 81–87 (2015). https://doi.org/10.1007/s00340-015-6102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6102-4

Keywords

Navigation