Abstract
In this study, the laser–plasma interaction and the resultant plasma enhancement by ultrashort double-pulse ablation of silicon are investigated. It is found that by carefully selecting inter-pulse delay, the plasma temperature and electron number density can be effectively increased, compared to the case of single-pulse ablation. The strong plasma enhancement is observed at long-pulse delay (above 20 ps), companied by the ablation rate suppression. At short-pulse delay (below 20 ps), strong ablation rate enhancement is observed, with no plasma enhancement. The spatial analysis of plasma temperature shows that the second pulse energy is mainly absorbed by the front portion of the plasma, where the temperature is increased the most. The plasma reheating leads to a faster expansion of the plasma.
Similar content being viewed by others
References
J. Scaffidi, J. Pender, W. Pearman, S.R. Goode, B.W. Colston Jr, J.C. Carter, S.M. Angel, Appl. Opt. 42, 6099–6106 (2003)
K.L. Eland, D.N. Stratis, D.M. Gold, S.R. Goode, S.M. Angel, Appl. Spectrosc. 55, 286–290 (2001)
J. Scaffidi, S.M. Angel, D.A. Cremers, Anal. Chem. 78, 24–32 (2006)
V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, Spectrochim. Acta, Part B 55, 1771–1785 (2000)
E. Miura, H. Honda, K. Katsura, E. Takahashi, K. Kondo, in Proceedings of SPIE, vol 3886, pp. 320–330 (2000)
A. Rousse, K.T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J. Rousseau, D. Umstadter, D. Hulin, Phys. Rev. Lett. 93, 135005 (2004)
J. Zhou, J. Peatross, M.M. Murnane, H.C. Kapteyn, I.P. Christov, Phys. Rev. Lett. 76, 752 (1996)
P. Li, S. Chu, Phys. Rev. A 88, 053415 (2013)
M.H. Key, Nature 412, 775–776 (2001)
R. Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azechi, H. Fujita, H. Habara, T. Hall, Y. Izawa, T. Jitsuno, Y. Kitagawa, K.M. Krushelnick, K.L. Lancaster, K. Mima, K. Nagai, M. Nakai, H. Nishimura, T. Norimatsu, P.A. Norreys, S. Sakabe, K.A. Tanaka, A. Youssef, M. Zepf, T. Yamanaka, Nature 418, 933–9344 (2002)
L.O. Silva, M. Marti, J.R. Davies, R.A. Fonseca, C. Ren, F.S. Tsung, W.B. Mori, Phys. Rev. Lett. 92, 015002 (2004)
E.L. Clark, K. Krushelnick, J.R. Davies, M. Zepf, M. Tatarakis, F.N. Beg, A. Machacek, P.A. Norreys, M.I.K. Santala, I. Watts, A.E. Dangor, Phys. Rev. Lett. 84, 670–673 (2000)
Z. Hou, Z. Wang, J. Liu, W. Ni, Z. Li, Opt. Express 21, 15974–15979 (2013)
Z. Wang, Z. Hou, S.-L. Lui, D. Jiang, J. Liu, Z. Li, Opt. Express 20, A1011–A1018 (2012)
X. Liu, S. Sun, X. Wang, Z. Liu, Q. Liu, P. Ding, Z. Guo, B. Hu, Opt. Express 21, A704 (2013)
S.S. Harilal, P.K. Diwakar, A. Hassanein, Appl. Phys. Lett. 103, 041102 (2013)
J. Mildner, C. Sarpe, N. Gotte, M. Wollenhaupt, T. Baumert, Appl. Surf. Sci. 302, 291–298 (2013)
V. Piñon, D. Anglos, Spectrochim. Acta, Part B 64, 950–960 (2009)
A. Semerok, C. Dutouquet, Thin Solid Films 453–454, 501–505 (2004)
D. Scuderi, O. Albert, D. Moreau, P.P. Pronko, J. Etchepare, Appl. Phys. Lett. 86, 071502 (2005)
S. Amoruso, R. Bruzzese, X. Wang, G. O’Connell, J.G. Lunney, J. Appl. Phys. 108, 113302 (2010)
K. Amal, S.H. Elnaby, V. Palleschi, A. Salvetti, M.A. Harith, Appl. Phys. B 83, 651–657 (2006)
Y. Qi, H. Qi, Q. Wang, Z. Chen, Z. Hu, Opt. Laser Technol. 66, 68–77 (2015)
J.T. Schiffern, D.W. Doerr, D.R. Alexander, Spectrochim. Acta, Part B 62, 1412–1418 (2007)
Z. Hu, S. Singha, Y. Liu, R.J. Gordon, Appl. Phys. Lett. 90, 131910 (2007)
S. Singha, Z. Hu, R.J. Gordon, J. Appl. Phys. 104, 113520 (2008)
T. Donnelly, J.G. Lunney, S. Amoruso, R. Bruzzese, X. Wang, X. Ni, J. Appl. Phys. 106, 013304 (2009)
S. Amoruso, R. Bruzzese, X. Wang, N.N. Nedialkov, P.A. Atanasov, J. Phys. D Appl. Phys. 40, 331 (2007)
S. Amoruso, R. Bruzzese, X. Wang, J. Xia, Appl. Phys. Lett. 93, 191504 (2008)
M.E. Povarnitsyn, T.E. Itina, M. Sentis, K.V. Khishchenko, P.R. Levashov, Phys. Rev. B 75, 235414 (2007)
S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, L. Lanotte, Appl. Phys. Lett. 84, 4502 (2004)
A. Semerok, C. Dutouquet, Thin Solid Films 453–454, 501 (2004)
M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Phys. Rev. Lett. 103, 195002 (2009)
D. Perez, L.K. Béland, D. Deryng, L.J. Lewis, M. Meunier, Phys. Rev. B 77, 014108 (2008)
T.Y. Choi, D.J. Hwang, C.P. Grigoropoulos, Appl. Surf. Sci. 197–198, 720–725 (2002)
X. Zhao, Y. Shin, Appl. Phys. Lett. 105, 111907 (2014)
H.R. Griem, Plasma Spectroscopy (McGraw-Hill Inc, New York, 1964)
W. Lochte-Holtgreven, Plasma Diagnostics (North-Hol-land, Amsterdam, 1968)
A.W. Miziolek, V. Palleschi, I. Schechter, Laser-induced breakdown spectroscopy (LIBS): fundamentals and applications (Cambridge University Press), Cambridge, 2006)
A. Fridman, L.A. Kennedy, Plasma Physics and Engineering (Taylor and Francis), New York, 2004)
V.K. Unnikrishnan, K. Alti, V.B. Kartha, C. Santhosh, G.P. Gupta, B.M. Suri, Pramana J. Phys. 74(6), 983–993 (2010)
X. Zeng, X. Mao, S.S. Mao, J.H. Yoo, R. Greif, R.E. Russo, J. Appl. Phys. 95(3), 816 (2004)
NIST Atomic Spectra Database, http://www.nist.gov/pml/data/asd.cfm
B. Zmerli, N. Ben Nessib, M.S. Dimitrijevic, S. Sahal-Bréchot, Phys. Scr. 82, 055301 (2010)
W. Hu, Y.C. Shin, G.B. King, Phys. Plasmas 18, 093302 (2011)
S. Amoruso, R. Bruzzese, X. Wang, Appl. Phys. Lett. 95, 251501 (2009)
M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, C. Vallebona, Spectrochim. Acta Part B 59, 723–735 (2004)
Acknowledgments
The authors wish to gratefully acknowledge the financial support provided for this study by the National Science Foundation (Grant No CMMI-1030786 and CMMI-1300930).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhao, X., Shin, Y.C. Laser–plasma interaction and plasma enhancement by ultrashort double-pulse ablation. Appl. Phys. B 120, 81–87 (2015). https://doi.org/10.1007/s00340-015-6102-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00340-015-6102-4