Skip to main content
Log in

Optical fabrication of two-dimensional photorefractive periodic photonic lattices and quasicrystal microstructures by multi-lens board

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We experimentally demonstrate a convenient approach to fabricate two-dimensional periodic photonic lattices and quasicrystal microstructures in iron-doped lithium niobate photorefractive crystal by multi-lens board. The method does not require complicated optical adjustment system. We analyze the induced square photonic lattices, elliptic photonic lattices and quasicrystal microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. Induced photonic microstructures can be fixed or erased and re-recorded in the crystal. We also numerically demonstrate that the method can be easily extended to form other complex photonic microstructures by designing the multi-lens board appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, Photonic Crystals-Molding the Flow of Light (Princeton University, Princeton NJ, 2008)

    MATH  Google Scholar 

  2. M. Qiu, S. He, Phys. Rev. B 60, 10610 (1999)

    Article  ADS  Google Scholar 

  3. C. Janot, Quasicrystals: A Primer (Clarendon, Oxford, 1994)

    Book  MATH  Google Scholar 

  4. M.A. Kaliteevski, S. Brand, R.A. Abram, T.F. Krauss, R.D. Rue, P. Millar, Nanotechnology 11, 274 (2000)

    Article  ADS  Google Scholar 

  5. M. Peach, Mater. Today 9, 44 (2006)

    Article  Google Scholar 

  6. K. Wang, Phys. Rev. B 73, 235122 (2006)

    Article  ADS  Google Scholar 

  7. M.E. Zoorob, M.D.B. Charlton, G.J. Parker, J.J. Baumberg, M.C. Netti, Nature 404, 740 (2000)

    Article  ADS  Google Scholar 

  8. C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, B. Sun, Appl. Phys. Lett. 75, 1848 (1999)

    Article  ADS  Google Scholar 

  9. W. Man, M. Megens, P.J. Steinhardt, P.M. Chaikin, Nature 436, 993 (2005)

    Article  ADS  Google Scholar 

  10. H. Zhao, R.P. Zaccaria, J. Song, S. Kawata, H. Sun, Phys. Rev. B 79, 115118 (2009)

    Article  ADS  Google Scholar 

  11. H.B. Sun, S. Matsuo, H. Misawa, Appl. Phys. Lett. 74, 786 (1999)

    Article  ADS  Google Scholar 

  12. Z.Y. Zheng, X.Z. Liu, Y.H. Luo, B.Y. Cheng, D.Z. Zhang, Q.B. Meng, Y.R. Wang, Appl. Phys. Lett. 90, 051910 (2007)

    Article  ADS  Google Scholar 

  13. J.W. Fleischer, M. Segev, N.K. Efremidis, D.N. Christodoulides, Nature 422, 147 (2003)

    Article  ADS  Google Scholar 

  14. W. Jin, Y. Gao, Superlattice Microstruct. 51, 114 (2012)

    Article  ADS  Google Scholar 

  15. W. Jin, Y. Gao, Opt. Quantum Electron. 45, 1269 (2013)

    Article  Google Scholar 

  16. W. Jin, Y.L. Xue, Opt. Laser Technol. 66, 106 (2015)

    Article  ADS  Google Scholar 

  17. D.N. Christodoulides, F. Lederer, Y. Silberberg, Nature 424, 817 (2003)

    Article  ADS  Google Scholar 

  18. H. Martin, E.D. Eugenieva, Z. Chen, D.N. Christodoulides, Phys. Rev. Lett. 92, 123902 (2004)

    Article  ADS  Google Scholar 

  19. J.J. Amodei, D.L. Staebler, Appl. Phys. Lett. 18, 540 (1971)

    Article  ADS  Google Scholar 

  20. G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, G. Abbate, Opt. Express 16, 5164 (2008)

    Article  ADS  Google Scholar 

  21. M. Boguslawski, P. Rose, C. Denz, Phys. Rev. A 84, 013832 (2011)

    Article  ADS  Google Scholar 

  22. L.J. Wu, Y.C. Zhong, K.S. Wong, G.P. Wang, L. Yang, Appl. Phys. Lett. 88, 091115 (2006)

    Article  ADS  Google Scholar 

  23. W. Jin, Y. Gao, Appl. Phys. Lett. 101, 141104 (2012)

    Article  ADS  Google Scholar 

  24. M. Lei, B.L. Yao, R.A. Rupp, Opt. Express 14, 5803 (2006)

    Article  ADS  Google Scholar 

  25. J. L. Stay, Multi-Beam-Interference-Based Methodology for the Fabrication of Photonic Crystal Structures, Ph.D. Thesis, Electrical and Computer Engineering (Georgia Institute of Technology, Atlanta, GA, USA, 2009)

  26. G. Bartal, O. Cohen, H. Buljan, J.W. Fleischer, O. Manela, M. Segev, Phys. Rev. Lett. 94, 163902 (2005)

    Article  ADS  Google Scholar 

  27. J. Xavier, P. Rose, B. Terhalle, J. Joseph, C. Denz, Opt. Lett. 34, 2625 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) under Grant No. 2011CB921604 and the National Natural Science Foundation of China under Grant Nos. 11234003 and 91436211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Ling Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, W., Xue, Y.L. Optical fabrication of two-dimensional photorefractive periodic photonic lattices and quasicrystal microstructures by multi-lens board. Appl. Phys. B 120, 75–80 (2015). https://doi.org/10.1007/s00340-015-6100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6100-6

Keywords

Navigation