Skip to main content
Log in

Effects of turbulent flow field on wavefront aberration in liquid-convection-cooled disk laser oscillator

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A liquid-convection-cooled Nd:YAG disk laser oscillator with an output power of 30.7 W and a slope efficiency of 14.1 % is built. By using large-eddy simulation model, the wavefront aberration induced by the turbulent flow is numerically calculated. In the experiment, a Shack–Hartmann wavefront sensor is used to measure the wavefront aberration and the laser intensity distribution. The RMS values and PV values of the beam wavefront and the phase stability of three feature points have been investigated. The experimental results prove that the turbulent flow with high flow velocity and high turbulent intensity can reduce the aberration of the flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.J. McNaught, C.P. Asman, H. Injeyan, A. Jankevics, A.M. Johnson, G.C. Jones, H. Komine, J. Machan, J. Marmo, M. McClellan, R. Simpson, J. Sollee, M.M. Valley, M. Weber, S.B. Weiss, 100-kW Coherently Combined Nd:YAG MOPA Laser Array, in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThD2

  2. E.I. Moses, R.N. Boyd, B.A. Remington, C.J. Keane, R. Al-Ayat, The national ignition facility: ushering in a new age for high energy density science. Phys. Plasmas 16, 041006 (2009)

    Article  ADS  Google Scholar 

  3. W. Koechner, Solid-State Laser Engineering, 6th edn. (Springer, Berlin, 2006)

    Google Scholar 

  4. M. Ostermeyer, D. Mudge, P.J. Veitch, J. Munch, Thermally induced birefringence in Nd:YAG slab lasers. Appl. Opt. 45, 5368 (2006)

    Article  ADS  Google Scholar 

  5. V. Sazegari, M.R.J. Milani, A.K. Jafari, Structural and optical behavior due to thermal effects in endpumped Yb:YAG disk lasers. Appl. Opt. 49(36), 6910–6916 (2010)

    Article  ADS  Google Scholar 

  6. Y. Lumer, I. Moshe, A. Meir, Y. Paiken, G. Machavariani, S. Jackel, Effects of thermally induced aberrations on radially and azimuthally polarized beams. J. Opt. Soc. Am. B. 24(9), 2279–2286 (2007)

    Article  ADS  Google Scholar 

  7. K.L. Schepler, R.D. Peterson, P.A. Berry, J.B. McKay, Thermal effects in Cr2+:ZnSe thin-disc lasers. IEEE J. Quant. Elec. 11(3), 713 (2005)

    Article  Google Scholar 

  8. H. Okada, H. Yoshida, H. Fujita, M. Nakatsuka, Nd: YAG split-disk laser amplifier for 10 J output energy. Opt. Commun. 260, 277–281 (2006)

    Article  ADS  Google Scholar 

  9. X. Fu, P. Li, Q. Liu, M. Gong, 3 kW liquid–cooled elastically-supported Nd:YAG multi-slab CW laser resonator. Opt. Express 22, 18421–18432 (2014)

    Article  ADS  Google Scholar 

  10. M.D. Perry, P.S. Banks, J. Zweiback, R.W. Schleicher, Laser Containing a Distributed Gain Medium. US Patent 7366, 211 B2 (2008)

  11. A. Mandl, D.E. Klimek, Textron’s J-HPSSL 100 kW ThinZag® Laser Program, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThH2

  12. K.E. Oughstun, Aberration sensitivity of unstable-cavity geometries. J. Opt. Soc. Am. 3(8), 1113–1141 (1986)

    Article  ADS  Google Scholar 

  13. J.H. Ferziger, M. Perić, Solution of the Navier–Stokes equations (Springer, Berlin, Heidelberg, 2002)

    Book  Google Scholar 

  14. X.Y. Luo, J.S. Hinton, T.T. Liew, K.K. Tan, LES modelling of flow in a simple airway model. Med. Eng. Phys. 26(5), 403–413 (2004)

    Article  Google Scholar 

  15. F. Felten, Y. Fautrelle, Y. Du Terrail, O. Metais, Numerical modelling of electromagnetically driven turbulent flows using LES methods. Appl. Math. Model. 28(1), 15–27 (2004)

    Article  MATH  Google Scholar 

  16. M.T. Landahl, E. Mollohristensen, Turbulence and Random Processes in Fluid Mechanics, 2nd edn. (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  17. J.W. Strohbehn, Laser Beam Propagation in the Atmosphere (Springer, Berlin, 1978)

    Book  Google Scholar 

  18. M.E. Thomas, Optical Propagation in Linear Media: Atmospheric Gases and Particles, Solid-State Components, and Water (Oxford University Press, Oxford, 2006)

    Google Scholar 

Download references

Acknowledgments

The research was supported in part by Tsinghua University Initiative Scientific Research Program, in part by the National Natural Science Foundation of China (Grant 51021064), and in part by China Postdoctoral Science Foundation funded project (2013T60108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Fu, X., Liu, Q. et al. Effects of turbulent flow field on wavefront aberration in liquid-convection-cooled disk laser oscillator. Appl. Phys. B 119, 371–380 (2015). https://doi.org/10.1007/s00340-015-6085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6085-1

Keywords

Navigation