Skip to main content
Log in

Planar laser-induced incandescence of turbulent sooting flames: the influence of beam steering and signal trapping

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The influence of beam steering and signal trapping on the accuracy of soot volume fractions measured using planar laser-induced incandescence (LII) has been investigated in turbulent non-premixed sooting flames at atmospheric pressure. In turbulent non-premixed C2H4/air flames, the influence of local de-focusing/focusing of the laser sheet from beam steering can result in the underestimate of the averaged LII signal by 30 %, even when operating within the so-called plateau regime of laser fluence. Beam steering was also found to be significant in both the upstream region of C2H4/air flames and non-reacting C2H4 flows, because the fuel has a relatively high refractive index compared with ambient air. The extent of beam steering at different heights of reacting and isothermal flows as well as its dependence on exit Reynolds number (Re) has been measured. The measurements reveal that even at low turbulence levels (2000 < Re < 3000), beam steering effects can be significant. Also found is that the LII signal at a 450 nm wavelength can be attenuated by a few per cent at high soot loading regions in turbulent flames due to signal trapping. Finally, the feasibility of directly evaluating the signal attenuation via planar LII results was assessed by comparing the virtual soot attenuation calculated based on the planar LII result with that measured using light-of-sight extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.C. Smyth, C.R. Shaddix, Combust. Flame 107, 314–320 (1996)

    Article  Google Scholar 

  2. S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Appl. Phys. B 83, 397–402 (2006)

    Article  ADS  Google Scholar 

  3. T.C. Williams, C.R. Shaddix, K.A. Jensen, J.M. Suo-Anttila, Int. J. Heat Mass Transf. 50, 1616–1630 (2007)

    Article  Google Scholar 

  4. X. Lopez-Yglesias, P.E. Schrader, H.A. Michelsen, J. Aerosol Sci. 75, 43–64 (2014)

    Article  Google Scholar 

  5. K. Kohse-Höinghaus, J.B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, New York, 2002)

    Google Scholar 

  6. H.A. Michelsen, J. Chem. Phys. 118, 7012–7045 (2003)

    Article  ADS  Google Scholar 

  7. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333–354 (2006)

    Article  ADS  Google Scholar 

  8. F. Goulay, P.E. Schrader, X. Lopez-Yglesias, H.A. Michelsen, Appl. Phys. B 112, 287–306 (2013)

    Article  ADS  Google Scholar 

  9. J.V. Pastor, J.M. Garcia, J.M. Pastor, J.E. Buitrago, Meas. Sci. Technol. 17, 3279–3288 (2006)

    Article  ADS  Google Scholar 

  10. J. Zerbs, K.P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, W. Meier, Appl. Phys. B 96, 683–694 (2009)

    Article  ADS  Google Scholar 

  11. R.L. Vander Wal, Appl. Phys. B 96, 601–611 (2009)

    Article  ADS  Google Scholar 

  12. B. Hemmerling, in Proceedings SPIE Combustion Diagnostics, vol. 3108, p. 32–37 (1997)

  13. F. Weinberg, Proc. Combust. Inst. 26, 939–944 (1996)

    Article  Google Scholar 

  14. G. Magnotti, A.D. Cutler, P.M. Danehy, Appl. Opt. 51, 4730–4741 (2012)

    Article  ADS  Google Scholar 

  15. A. Stella, G. Guj, J. Kompenhans, M. Raffel, H. Richard, Exp. Fluids 30, 167–180 (2001)

    Article  Google Scholar 

  16. P.E. Dimotakis, H.J. Catrakis, D.C. Fourguette, J. Fluid Mech. 433, 105–134 (2001)

    Article  ADS  MATH  Google Scholar 

  17. S.A. Kaiser, J.H. Frank, M.B. Long, Appl. Opt. 44, 6557–6564 (2005)

    Article  ADS  Google Scholar 

  18. K.A. Thomson, M.R. Johnson, D.R. Snelling, G.J. Smallwood, Appl. Opt. 47, 694–703 (2008)

    Article  ADS  Google Scholar 

  19. M.P.B. Musculus, L.M. Pickett, Combust. Flame 141, 371–391 (2005)

    Article  Google Scholar 

  20. S.M. Mahmoud, G.J. Nathan, P.R. Medwell, B.B. Dally, Z.T. Alwahabi, Proc. Combust. Inst. 35, 1931–1938 (2015)

    Article  Google Scholar 

  21. M. Köhler, K.P. Geigle, W. Meier, B.M. Crosland, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 104, 409–425 (2011)

    Article  ADS  Google Scholar 

  22. M. Wolfgang, Flow Visualization, 2nd edn. (Academic Press, Orlando, 1987)

    MATH  Google Scholar 

  23. M.Y. Choi, K.A. Jensen, Combust. Flame 112, 485–491 (1998)

    Article  Google Scholar 

  24. F. Liu, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 96, 671–682 (2009)

    Article  ADS  Google Scholar 

  25. F. Migliorini, S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 45, 7706–7711 (2006)

    Article  ADS  Google Scholar 

  26. S. Bejaoui, X. Mercier, P. Desgroux, E. Therssen, Combust. Flame 161, 2479–2491 (2014)

    Article  Google Scholar 

  27. S.S. Krishnan, K.C. Lin, G.M. Faeth, J. Heat Trans.-T. ASME 123, 331–339 (2001)

    Article  Google Scholar 

  28. M. Köhler, K.-P. Geigle, T. Blacha, P. Gerlinger, W. Meier, Combust. Flame 159, 2620–2635 (2012)

    Article  Google Scholar 

  29. N.H. Qamar, Z.T. Alwahabi, Q.N. Chan, G.J. Nathan, D. Roekaerts, K.D. King, Combust. Flame 156, 1339–1347 (2009)

    Article  Google Scholar 

  30. C.R. Shaddix, J. Zhang, R.W. Schefer, in Towards Quantitative Measurements of Soot Concentrations in Strongly Sooting Turbulent Jet Diffusion Flames, in Lasers, Sources and Related Photonic Devices, OSA Technical Digest Series (Optical Society of America, 2010), paper LWB4. http://www.opticsinfobase.org/abstract.cfm?URI=LACSEA-2010-LWB4

  31. H. Bladh, P.-E. Bengtsson, Appl. Phys. B 78, 241–248 (2004)

    Article  ADS  Google Scholar 

  32. V. Huijnen, A.V. Evlampiev, L.M.T. Somers, R.S.G. Baert, L.P.H. de Goey, Combust. Sci. Technol. 182, 103–123 (2010)

    Article  Google Scholar 

  33. M.E. Decroix, W.L. Roberts, Combust. Sci. Technol. 160, 165–189 (2000)

    Article  Google Scholar 

  34. H. Wang, D.X. Du, C.J. Sung, C.K. Law, Proc. Combust. Inst. 26, 2359–2368 (1996)

    Article  Google Scholar 

  35. C.F. Kaminski, J. Engstrom, M. Aldén, Proc. Combust. Inst. 27, 85–93 (1998)

    Article  Google Scholar 

  36. J. Reimann, S.A. Kuhlmann, S. Will, Appl. Phys. B 96, 583–592 (2009)

    Article  ADS  Google Scholar 

  37. S. Pfadler, F. Beyrau, M. Loffler, A. Leipertz, Opt. Express 14, 10171–10180 (2006)

    Article  ADS  Google Scholar 

  38. F. Migliorini, K.A. Thomson, G.J. Smallwood, Appl. Phys. B 104, 273–283 (2011)

    Article  ADS  Google Scholar 

  39. C.R. Shaddix, J.Y. Zhang, R.W. Schefer, J. Doom, J.C. Oefelein, S. Kook, L.M. Pickett, H. Wang, Understanding and predicting soot generation in turbulent non-premixed jet flames, SAND2010-7178, Sandia National Laboratories, (2010)

  40. Z.W. Sun, D.H. Gu, G.J. Nathan, Z.T. Alwahabi, B.B. Dally, Proc. Combust. Inst. 35, 3673–3680 (2015)

    Article  Google Scholar 

  41. R. Hadef, K. Geigle, J. Zerbs, R. Sawchuk, D. Snelling, Appl. Phys. B 112, 395–408 (2013)

    Article  ADS  Google Scholar 

  42. P.A.M. Kalt, C.H. Birzer, G.J. Nathan, Appl. Opt. 46, 5823–5834 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The Australian Research Council (ARC) is gratefully acknowledged for their funding support. The authors wish to thank Dr Paul Medwell for useful discussions on the subject. The authors would like to thank the reviewers for their detailed comments and suggestions. Addressing these has strengthened the document significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. W. Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 7902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z.W., Alwahabi, Z.T., Gu, D.H. et al. Planar laser-induced incandescence of turbulent sooting flames: the influence of beam steering and signal trapping. Appl. Phys. B 119, 731–743 (2015). https://doi.org/10.1007/s00340-015-6080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6080-6

Keywords

Navigation