Applied Physics B

, Volume 119, Issue 1, pp 177–187 | Cite as

Time-multiplexed open-path TDLAS spectrometer for dynamic, sampling-free, interstitial H2 18O and H2 16O vapor detection in ice clouds

  • B. Kühnreich
  • S. Wagner
  • J. C. Habig
  • O. Möhler
  • H. Saathoff
  • V. Ebert


An advanced in situ diode laser hygrometer for simultaneous, sampling-free detection of interstitial H2 16O and H2 18O vapor was developed and tested in the aerosol interaction and dynamics in atmosphere (AIDA) cloud chamber during dynamic cloud formation processes. The spectrometer to measure isotope-resolved water vapor concentrations comprises two rapidly time-multiplexed DFB lasers near 1.4 and 2.7 µm and an open-path White cell with 227-m absorption path length and 4-m mirror separation. A dynamic water concentration range from 2.6 ppb to 87 ppm for H2 16O and 87 ppt to 3.6 ppm for H2 18O could be achieved and was used to enable a fast and direct detection of dynamic isotope ratio changes during ice cloud formation in the AIDA chamber at temperatures between 190 and 230 K. Relative changes in the H2 18O/H2 16O isotope ratio of 1 % could be detected and resolved with a signal-to-noise ratio of 7. This converts to an isotope ratio resolution limit of 0.15 % at 1-s time resolution.


Isotope Ratio Isotope Ratio Mass Spectrometry Line Strength Cloud Formation Cirrus Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was part of the ISOCLOUD initiative, which was funded by the Deutsche Forschungsgesellschaft (DFG) [Project Numbers DFG EB235/4-1 and DFG MO668/3-1] and the US National Science Foundation (NSF) as part of the Joint DFG/NSF 2009/2010 call on “International Collaboration in Chemistry between US Investigators and their Counterparts Abroad (ICC).” We like to thank all our cooperation partners within the ISOCLOUD project for the thoughtful discussions and the generous support we have experienced throughout the project. In particular, we want to mention the selection of water isotope transitions, which has been agreed upon by all partners within the ISOCLOUD project and will be described elsewhere. Support in the line selection for the H2 18O line by E. J. Moyer from the Department of Geophysical Sciences at the University of Chicago is acknowledged.


  1. 1.
    D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, Report from Working Group I of the Intergovernmental Panel on Climate Change (2007)Google Scholar
  2. 2.
    M. Krämer, C. Schiller, A. Afchine, R. Bauer, I. Gensch, A. Mangold, S. Schlicht, N. Spelten, N. Sitnikov, S. Borrmann, M. de Reus, P. Spichtinger, Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys. 9(11), 3505–3522 (2009)CrossRefADSGoogle Scholar
  3. 3.
    U. Burkhardt, B. Kärcher, U. Schumann, Global modeling of the contrail and contrail cirrus climate impact. Bull. Am. Meteorol. Soc. 91(4), 479–484 (2010)CrossRefADSGoogle Scholar
  4. 4.
    K. Grerens, U. Schumann, M. Helten, H. Smit, P.-H. Wang, ice-supersaturated regions and subvisible cirrus in the northern midlatitude upper troposphere. J. Geophys. Res. 105, 22743–22753 (2000)CrossRefADSGoogle Scholar
  5. 5.
    B. Kärcher, P. Spichtinger, Cloud-controlling factors of cirrus, in Clouds in the Perturbed Climate System, ed. by J. Heintzenberg, R.J. Charlson (MIT Press, Cambridge, 2009), p. 597Google Scholar
  6. 6.
    U. Lohmann, P. Spichtinger, S. Jess, T. Peter, H. Smit, Cirrus cloud formation and ice supersaturated regions in a global climate model. Environ. Res. Lett. 3(4), 045022 (2008)CrossRefADSGoogle Scholar
  7. 7.
    M. Bolot, B. Legras, E.J. Moyer, Modelling and interpreting the isotopic composition of water vapour in convective updrafts. Atmos. Chem. Phys. 13(16), 7903–7935 (2013)CrossRefADSGoogle Scholar
  8. 8.
    C.R. Webster, A.J. Heymsfield, Water isotope ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways. Science (New York, N.Y.) 302(5651), 1742–1745 (2003)CrossRefADSGoogle Scholar
  9. 9.
    G. Lis, L.I. Wassenaar, M.J. Hendry, High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Anal. Chem. 80(1), 287–293 (2008)CrossRefGoogle Scholar
  10. 10.
    A. Angert, T. Weiner, S. Mazeh, M. Sternberg, Soil phosphate stable oxygen isotopes across rainfall and bedrock gradients. Environ. Sci. Technol. 46(4), 2156–2162 (2012)CrossRefADSGoogle Scholar
  11. 11.
    O. Möhler, Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles. J. Geophys. Res. 110(D11), D11210 (2005)CrossRefADSGoogle Scholar
  12. 12.
    A. Mangold, M. Krämer, C. Giesemann, H. Teichert, V. Ebert, Microphysics of cirrus clouds and its dependency on different types of aerosols. in Proceedings of Aviation, Atmosphere and Climate (2003), pp. 1–6Google Scholar
  13. 13.
    A. Gettelman, Simulations of water isotope abundances in the upper troposphere and lower stratosphere and implications for stratosphere troposphere exchange. J. Geophys. Res. 110(D17), D17301 (2005)CrossRefADSGoogle Scholar
  14. 14.
    D.S. Sayres, L. Pfister, T.F. Hanisco, E.J. Moyer, J.B. Smith, J.M. St. Clair, A.S. O’Brien, M.F. Witinski, M. Legg, J.G. Anderson, Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere. J. Geophys. Res., 115, D00J20 (2010)Google Scholar
  15. 15.
    C.R. Webster, A.J. Heymsfield, Water isotope ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways. Science (New York, N.Y.) 302(5651), 1742–1745 (2003)CrossRefADSGoogle Scholar
  16. 16.
    D.G. Johnson, K.W. Jucks, W.A. Traub, K.V. Chance, Isotopic composition of stratospheric water vapor: measurements and photochemistry. J. Geophys. Res. Atmos. 106(D11), 12211–12217 (2001)CrossRefADSGoogle Scholar
  17. 17.
    M. Majoube, Fractionation factor of 18O between water vapour and ice. Nature 226, 1242 (1970)CrossRefADSGoogle Scholar
  18. 18.
    M. Majoube, Fractionnnement en oxygène 18 et en Deutèrium entre l’eau et sa vapeur. J. Chem. Phys. 68, 1423–1436 (1971)Google Scholar
  19. 19.
    L. Merlivat, Molecular diffusivities of H216O, HDO, H218O in gases. J. Chem. Phys. 6, 2861–2871 (1978)Google Scholar
  20. 20.
    M.D. Ellehoj, H.C. Steen-Larsen, S.J. Johnsen, M.B. Madsen, Ice–vapor equilibrium fractionation factor of hydrogen and oxygen isotopes: experimental investigations and implications for stable water isotope studies. RCM 27(19), 2149–2158 (2013)Google Scholar
  21. 21.
    E. Barkan, B. Luz, Diffusivity fractionations of H2(16)O/H2(17)O and H2(16)O/H2(18)O in air and their implications for isotope hydrology. RCM 21(18), 2999–3005 (2007)Google Scholar
  22. 22.
    L. Berdié, I. Casals, I. Fernández, O. Jáuregui, M. Marimon, J. Perona, P. Teixidor, Basics of mass spectrometry, in Handbook of instrumental techniques for materials, chemical and biosciences research, 1st edn., ed. by J.R. Seoane, X. Llovet (Centres Cientifics i Tecnologics, Universitat Barcelona, Barcelona, 2012)Google Scholar
  23. 23.
    R.M. Marimon, J. Perona, P. Teixidor, Isotope ratio—mass spectrometry, in Handbook of Instrumental Techniques for Materials, Chemical and Biosciences Research, 1st edn., ed. by J.R. Seoane, X. Llovet (Centres Cientifics i Tecnologics Universitat Barcelona, Barcelona, 2012)Google Scholar
  24. 24.
    G.S. Engel, W.S. Drisdell, F.N. Keutsch, E.J. Moyer, J.G. Anderson, Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 microm: new sensitivity limits for absorption measurements in passive optical cavities. Appl. Opt. 45(36), 9221–9229 (2006)CrossRefADSGoogle Scholar
  25. 25.
    Y.A. Bakhirkin, A.A. Kosterev, C. Roller, R.F. Curl, F.K. Tittel, Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection. Appl. Opt. 43(11), 2257–2266 (2004)CrossRefADSGoogle Scholar
  26. 26.
    J. Landsberg, D. Romanini, E. Kerstel, Very high finesse optical-feedback cavity-enhanced absorption spectrometer for low concentration water vapor isotope analyses. Opt. Lett. 39(7), 1795–1798 (2014)CrossRefADSGoogle Scholar
  27. 27.
    D.J. Hamilton, M.G.D. Nix, S.G. Baran, G. Hancock, A.J. Orr-Ewing, Optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) in a ring cavity. Appl. Phys. B 100(2), 233–242 (2009)CrossRefADSGoogle Scholar
  28. 28.
    E. Kerstel, L. Gianfrani, Advances in laser-based isotope ratio measurements: selected applications. Appl. Phys. B 92(3), 439–449 (2008)CrossRefADSGoogle Scholar
  29. 29.
    B. Buchholz, B. Kühnreich, H.G.J. Smit, V. Ebert, Validation of an extractive, airborne, compact TDL spectrometer for atmospheric humidity sensing by blind intercomparison. Appl. Phys. B 110(2), 249–262 (2012)CrossRefADSGoogle Scholar
  30. 30.
    B. Buchholz, N. Böse, V. Ebert, Absolute validation of a diode laser hygrometer via intercomparison with the German national primary water vapor standard. Appl. Phys. B 116(4), 883–899 (2014)CrossRefADSGoogle Scholar
  31. 31.
    H. Teichert, T. Fernholz, V. Ebert, Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers. Appl. Opt. 42(12), 2043–2051 (2003)CrossRefADSGoogle Scholar
  32. 32.
    W. Gurlit, R. Zimmermann, C. Giesemann, T. Fernholz, V. Ebert, J. Wolfrum, U. Platt, J.P. Burrows, Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane. Appl. Opt. 44(1), 91–102 (2005)CrossRefADSGoogle Scholar
  33. 33.
    J. Skrotzki, P. Connolly, M. Schnaiter, H. Saathoff, O. Möhler, R. Wagner, M. Niemand, V. Ebert, T. Leisner, The accommodation coefficient of water molecules on ice–cirrus cloud studies at the AIDA simulation chamber. Atmos. Chem. Phys. 13(8), 4451–4466 (2013)CrossRefADSGoogle Scholar
  34. 34.
    D.W. Fahey, R.-S. Gao, O. Möhler, H. Saathoff, C. Schiller, V. Ebert, M. Krämer, T. Peter, N. Amarouche, L.M. Avallone, R. Bauer, Z. Bozóki, L.E. Christensen, S.M. Davis, G. Durry, C. Dyroff, R.L. Herman, S. Hunsmann, S.M. Khaykin, P. Mackrodt, J. Meyer, J.B. Smith, N. Spelten, R.F. Troy, H. Vömel, S. Wagner, F.G. Wienhold, The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques. Atmos. Meas. Tech. Discuss. 7(4), 3159–3251 (2014)CrossRefGoogle Scholar
  35. 35.
    B.J. Murray, T.W. Wilson, V. Ebert, S. Dobbie, Z. Cui, S.M.R.K. Al-Jumur, O. Möhler, M. Schnaiter, R. Wagner, S. Benz, M. Niemand, H. Saathoff, S. Wagner, B. Kärcher, Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci. 3(4), 233–237 (2010)CrossRefADSGoogle Scholar
  36. 36.
    V. Ebert, H. Teichert, C. Giesemann, H. Saathoff, U. Schurath, Fibre-coupled in situ laser absorption spectrometer for the selective detection of water vapour traces down to the ppb-level. Tech. Mess. 72(1–2005), 23–30 (2005)CrossRefGoogle Scholar
  37. 37.
    V. Ebert, C. Lauer, H. Saathoff, S. Hunsmann, Simultaneous, absolute gas-phase and total water detection during cloud formation studies in the AIDA chamber using a dual 1.37 µm TDL-spectrometer. Geophys. Res. Abstr. p. Vol. 10, EGU2008–A–10066 (2008)Google Scholar
  38. 38.
    V. Ebert, J. Wolfrum, Absorption, in Optical Measurements—Techniques and Applications, 2nd edn., ed. by F. Mayinger, O. Feldmann (Springer, Heidelberg, 2000), pp. 273–312Google Scholar
  39. 39.
    J.H. Lambert, Photometria sive de mensura et gradibus luminis colorum et umbrae (Eberhard Klett, Augsburg, 1790)Google Scholar
  40. 40.
    A. Beer, Determination of the absorption of red light in colored liquids (Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten), in Annalen der Physik und Chemie, 3rd edn., ed. by J.C. Poggendorff (Verlag von Johann Ambrosius Barth, Leibzig, 1852), pp. 78–888Google Scholar
  41. 41.
    S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, V. Ebert, Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm. Appl. Phys. B 92(3), 393–401 (2008)CrossRefADSGoogle Scholar
  42. 42.
    A. Pogány, O. Ott, O. Werhahn, V. Ebert, Towards traceability in CO2 line strength measurements by TDLAS at 2.7µm. J. Quant. Spectrosc. Radiat. Transfer 130, 147–157 (2013)CrossRefADSGoogle Scholar
  43. 43.
    L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110(9–10), 533–572 (2009)CrossRefADSGoogle Scholar
  44. 44.
    L.S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, L. Coudert, The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 96(2), 139–204 (2005)CrossRefADSGoogle Scholar
  45. 45.
    G.D. Farquhar, L.A. Cernusak, B. Barnes, Heavy water fractionation during transpiration. Plant Physiol. 143(1), 11–18 (2007)CrossRefGoogle Scholar
  46. 46.
    R.D. Deshpande, A.S. Maurya, B. Kumar, A. Sarkar, S.K. Gupta, Kinetic fractionation of water isotopes during liquid condensation under super-saturated condition. Geochim. Cosmochim. Acta 100, 60–72 (2013)CrossRefADSGoogle Scholar
  47. 47.
    C.D. Cappa, Isotopic fractionation of water during evaporation. J. Geophys. Res. 108(D16) (2003)Google Scholar
  48. 48.
    M. Majoube, Fractionnnement en 18O entre la glace et la vapeur d’eau. J. Chem. Phys. 68(4), 625–636 (1971)Google Scholar
  49. 49.
    G. Jakli, D. Staschewski, Vapour Pressure of H218O Ice (−50 to 0°C) and H218O Water (0 to 170°C). J. Chem. Soc., Faraday Trans. 73(1), 1505–1509 (1977)CrossRefGoogle Scholar
  50. 50.
    S. Hunsmann, S. Wagner, H. Saathoff, O. Möhler, U. Schurath, V. Ebert, Messung der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1,4 µm - Band. VDI Berichte 1959, 149–164 (2006)Google Scholar
  51. 51.
    T. Klostermann, A. Afchine, J. Barthel, M. Höh, S. Wagner, O. Witzel, H. Saathoff, C. Schiller, V. Ebert, HAI: a new TDLAS hygrometer for the HALO research aircraft. Geophys. Res. Abstr. 12, 9485 (2010)Google Scholar
  52. 52.
    O. Möhler, S. Benz, H. Saathoff, M. Schnaiter, R. Wagner, J. Schneider, S. Walter, V. Ebert, S. Wagner, The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols. Environ. Res. Lett. 3(2), 025007 (2008)CrossRefADSGoogle Scholar
  53. 53.
    O. Möhler, O. Stetzer, S. Schaefers, C. Linke, M. Schnaiter, R. Tiede, H. Saathoff, M. Krämer, A. Mangold, P. Budz, P. Zink, J. Schreiner, K. Mauersberger, W. Haag, B. Kärcher, U. Schurath, Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos. Chem. Phys. 3(1), 211–223 (2003)CrossRefADSGoogle Scholar
  54. 54.
    R. Wagner, H. Bunz, C. Linke, O. Möhler, K.-H. Naumann, H. Saathoff, M. Schnaiter, U. Schurath, Chamber simulations of cloud chemistry: the AIDA Chamber, in Environmental Simulation Chambers: Application to Atmospheric Chemical Processes, 62nd edn., ed. by I. Barnes, K.J. Rudzinski (Springer, Netherlands, 2006), pp. 67–82CrossRefGoogle Scholar
  55. 55.
    A. Mangold, R. Wagner, H. Saathoff, U. Schurath, C. Giesemann, V. Ebert, M. Kramer, O. Mohler, Experimental investigation of ice nucleation by different types of aerosols in the aerosol chamber AIDA: implications to microphysics of cirrus clouds. Meteorol. Z. 14(4), 485–497 (2005)CrossRefGoogle Scholar
  56. 56.
    B. Buchholz, V. Ebert, Offsets in fiber-coupled diode laser hygrometers caused by parasitic absorption effects and their prevention. Meas. Sci. Technol. 25(7), 075501 (2014)CrossRefADSGoogle Scholar
  57. 57.
    J.U. White, Long optical paths of large aperture. J. Opt. Soc. Am. 32(5), 285 (1942)CrossRefADSGoogle Scholar
  58. 58.
    R. Dominique, C. Patrick, Multiple-pass cell for very-long-path infrared spectrometry. Appl. Opt. 38(19), 4145–4150 (1999)CrossRefADSGoogle Scholar
  59. 59.
    D. Horn, G.C. Pimentel, 2.5-km Low-temperature multiple-reflection cell. Appl. Opt. 10(8), 1892–1898 (1971)CrossRefADSGoogle Scholar
  60. 60.
    R. Wagner, S. Benz, O. Möhler, H. Saathoff, U. Schurath, Probing ice clouds by broadband mid-infrared extinction spectroscopy: case studies from ice nucleation experiments in the AIDA aerosol and cloud chamber. Atmos. Chem. Phys. 6, 4775–4800 (2006)CrossRefADSGoogle Scholar
  61. 61.
    V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers. Proc. Combust. Inst. 30(1), 1611–1618 (2005)CrossRefGoogle Scholar
  62. 62.
    V. Ebert, J. Fitzer, I. Gerstenberg, K.U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, Simultaneous laser-based in situ detection of oxygen and water in a waste incinerator for active combustion control purposes. Symp. (Int.) Combust. 27(1), 1301–1308 (1998)CrossRefGoogle Scholar
  63. 63.
    E. Schlosser, T. Fernholz, H. Teichert, V. Ebert, In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers. Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2347–2359 (2002)CrossRefADSGoogle Scholar
  64. 64.
    B. Lins, P. Zinn, R. Engelbrecht, B. Schmauss, Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS. Appl. Phys. B 100(2), 367–376 (2010)CrossRefADSGoogle Scholar
  65. 65.
    P.A. Martin, Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring. Chem. Soc. Rev. 31(4), 201–210 (2002)CrossRefGoogle Scholar
  66. 66.
    P. Kluczynski, Å.M. Lindberg, O. Axner, Background signals in wavelength-modulation spectrometry by use of frequency-doubled diode-laser light. II. Experiment. Appl. Opt. 40(6), 794 (2001)CrossRefADSGoogle Scholar
  67. 67.
    M.J. Hendry, B. Richman, L.I. Wassenaar, Correcting for methane interferences on δ(2)H and δ(18)O measurements in pore water using H(2)O((liquid))-H(2)O((vapor)) equilibration laser spectroscopy. Anal. Chem. 83(14), 5789–5796 (2011)CrossRefGoogle Scholar
  68. 68.
    J.J. Moré, The Levenberg-Marquadt-Algorithm: implementation and theory, in Lecture notes in mathematics, ed. by G.A. Watson (Springer, Berlin, 1978), pp. 105–116Google Scholar
  69. 69.
    P. Werle, R. Mäcke, F. Slemr, The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B Photophys. Laser Chem. 57(2), 131–139 (1993)CrossRefADSGoogle Scholar
  70. 70.
    J.R. Gat, Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 24(1), 225–262 (1996)CrossRefADSGoogle Scholar
  71. 71.
    K. Scott, X. Lu, C. Cavanaugh, J. Liu, Optimal methods for estimating kinetic isotope effects from different forms of the Rayleigh distillation equation. Geochim. Cosmochim. Acta (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • B. Kühnreich
    • 1
    • 2
  • S. Wagner
    • 2
  • J. C. Habig
    • 3
  • O. Möhler
    • 3
  • H. Saathoff
    • 3
  • V. Ebert
    • 1
    • 2
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany
  2. 2.Center of Smart InterfacesTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Institute for Meteorology and Climate ResearchKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations