Abstract
A mid-infrared frequency comb is produced via an optical parametric oscillator pumped by an amplified 100 MHz Yb:fiber mode-locked laser. We use this source to make measurements of the concentration of the atmospherically relevant species of CH4 and H2O over a bandwidth of 100 nm centered at 3.25 μm. Multiple absorption lines for each species are detected with millisecond acquisition time using a virtual-image phased array spectrometer. The measured wavelength-dependent absorption profile is compared to and fitted by a model, yielding quantitative values of the atmospheric concentration of both CH4 and H2O in a controlled indoor environment, as well as over a 26-m open-air outdoor path .
Similar content being viewed by others
References
I. Levin, T. Naeglar, B. Kromer, M. Diehl, R.J. Francey, A.J. Gomez-Pelaez, L.P. Steele, D. Wagenbach, R. Weller, D.E. Worthy, Tellus Ser. B Chem. Phys. Meterol. 62B, 26 (2010)
L.S. Rothman et al., J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)
P. Weibring, D. Richter, J. Walega, A. Fried, Opt. Expr. 15(21), 13476–13495 (2007)
K.C. Cossel, F. Adler, K.A. Bertness, M.J. Thorpe, J. Feng, M.W. Raynor, J. Ye, Appl. Phys. B 100, 917 (2010)
M. Thorpe, D. Clausen, M. Kirchner, J. Ye, Opt. Expr. 16(4), 2387 (2008)
G. Rieker, F. Giorgetta, W. Swann, J. Kofler, A. Zolot, L. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. Tans, I. Coddington, N. R. Newbury, Opt. 1(5), 290–298 (2014)
C.W. Rella, H. Chen, A.E. Andrews, A. Filges, C. Gerbig, J. Hatakka, A. Karion, N.L. Miles, S.J. Richardson, M. Steinbacher, C. Sweeney, B. Wastine, C. Zellweger, Atmos. Measurement Techn. 6, 837 (2013)
A. Fleisher, B. Bjork, T. Bui, K. Cossel, M. Okumura, J. Ye, J. Phys. Chem. Lett. 5(13), 2241 (2014)
I. Galli, S. Bartelini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi, Phys. Rev. Lett. 107, 270802 (2011)
R. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. Tittel, Chem. Phys. Lett. 487, 1 (2010)
P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y. Chang, L. Hvozdara, H.P. Herzig, P. Wägli, A. Homsy, N. deRooij, A. Wirthmueller, D. Hofstetter, H.T. Looserg, J. Faist, Anaylst 139(9), 2039 (2014)
C. Xia, M. Kumar, M. Cheng, R. Hegde, M. Islam, A. Galvanauskas, H. Winful, F. Terry Jr, Opt. Expr. 15(3), 865 (2007)
B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I.T. Sorokina, N. Picqué, T.W. Hänsch, Appl. Phys. B 100, 3 (2010)
K.A. Tillman et al., Appl. Phys. Lett. 85, 3356 (2004)
Ł. Kornaszewski, N. Gayraud, J. M. Stone, W. N. MacPherson, A. K. George, J. C. Knight, D. P. Hand, D. T. Reid, Opt. Expr. 15(18), 11219–11224 (2007)
F. Adler, K. Cossel, M. Thorpe, I. Hartl, M. Fermann, J. Ye, Opt. Lett. 34(9), 1330 (2009)
A. Hugi, G. Villares, S. Blaser, H.C. Liu, J. Faist, Nature 492, 229 (2012)
A. Schliesser, N. Picque, T.W. Hansch, Nat. Photonics 6, 440 (2012)
F. Adler, P. Maslowski, A. Foltynowicz, K.C. Cossel, T.C. Briles, I. Hartl, J. Ye, Opt. Expr. 18(12), 21861 (2010)
A.M. Zolot, F.R. Giorgeta, E. Baumann, J.W. Nicholson, W.C. Swann, I. Coddington, N.R. Newbury, Opt. Lett. 37(4), 638 (2012)
E. Baumann, F.R. Giorgetta, W.C. Swann, A.M. Zolot, I. Coddington, N.R. Newbury, Phys. Rev. A 84, 062513 (2011)
T. Ideguchi, A. Poisson, G. Guelachvili, N. Picque, T.W. Hansch, Nat. Commun. 5, 3375 (2014)
T. Johnson, S. Diddams, Appl. Phys. B 107(1), 31 (2012)
L. Nugent Glandorf, T. Neely, F. Adler, A. Fleisher, K. Cossel, B. Bjork, T. Dinneen, J. Ye, S. Diddams, Opt. Lett. 37(15), 3285 (2012)
L. Nugent-Glandorf, T. Johnson, Y. Kobayashi, S.A. Diddams, Opt. Lett. 36(9), 1578 (2001)
M. Shirasaki, Fujitsu Sci. Tech. J. 35(1), 113 (1999)
F. Benabid, Philos. Trans. R. Soc. A 364, 3439 (2006)
S. Xiao, A. Weiner, C. Lin, IEEE J. Quantum Electron 40(4), 420 (2004)
K.L. Vodopyanov, E. Sorokin, I.T. Sorokina, P.G. Schunemann, Opt. Lett. 36(12), 2275 (2011)
Acknowledgments
The authors thank Tyler Neely and Florian Adler for assistance in building and testing the Yb laser, amplifier, OPO and VIPA spectrometer, and Fetah Benabib for providing the air–core PCF. We are also grateful to J. Kofler, G. Petron, C. Sweeney and P. Tans from the National Oceanic and Atmospheric Administration in Boulder, CO for the independent measurement of methane and water during the outdoor measurements. We are indebted to Nathan Newbury for sharing his laboratory space, equipment and expertise as well as Flavio Cruz for helpful discussions. This work is supported by NIST and is a contribution of the US government; it is not subject to copyright in the USA.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Nugent-Glandorf, L., Giorgetta, F.R. & Diddams, S.A. Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb. Appl. Phys. B 119, 327–338 (2015). https://doi.org/10.1007/s00340-015-6070-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00340-015-6070-8