Skip to main content
Log in

Thermal properties of a new dye compound measured by thermal lens effect and Z-scan technique

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A new dye compound containing azomethine groups has been synthesized and characterized by FT-IR, 13C NMR, and an UV–visible spectrometer. Measurements of the thermally induced optical nonlinearity of dichloro bis[2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II) in a chloroform solvent were studied using a cw diode laser at 487 nm as the source of excitation, both in solution and as a poly methyl methacrylate solid film, respectively. The optical response was characterized by measuring the intensity-dependent refractive index n 2 of the medium using the Z-scan technique. The sample showed negative and large nonlinear refractive index values of the order of 10−7 cm2/W and reverse saturable absorption with high values of the nonlinear absorption coefficient of the order of 10−3 cm/W. The nonlinear refractive index was found to vary with the concentration. These results indicate that the dye is a promising candidate for applications in the nonlinear optic field. Thermal lens spectrometry was applied to investigate the thermo-optical properties and the nonlinear refractive index. In this technique, a pump and a probe beam were aligned collinearly. A localized change in the refractive index of the sample due to the thermal heating produced a thermal lens, which was then detected by studying the focusing and defocusing of the pump and probe beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Venkatram, D.N. Rao, L. Giribabu, Chem. Phys. Lett. 464, 211 (2008)

    Article  ADS  Google Scholar 

  2. T. Huang, Z. Hao, H. Gong, Chem. Phys. Lett. 451, 213 (2008)

    Article  ADS  Google Scholar 

  3. M. George, C.I. Muneer, C.P. Singh, Opt. Laser Technol. 40, 373 (2008)

    Article  ADS  Google Scholar 

  4. M. Tapati, K. Tanusree, J. Cryst. Growth 285, 178 (2005)

    Article  Google Scholar 

  5. R.K. Rathnagiri, R. Alkondan, Opt Appl XL(1), 87 (2010)

    Google Scholar 

  6. M. Sheik-Bahae, A.A. Said, E.W. VanStryland, Opt. Lett. 14, 955 (1989)

    Article  ADS  Google Scholar 

  7. M. Sheik-Bahae, A.A. Said, T.H. Wei, IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  8. O.V. Przhonska, J.H. Lim, J. Hang, J Opt Soc Am B 15, 802 (1998)

    Article  ADS  Google Scholar 

  9. J. Wang, M. Sheik-Bahae, A.A. Said, J Opt Soc Am B 11, 1009 (1994)

    Article  ADS  Google Scholar 

  10. T. Geethakrishnan, P.K. Palanisamy, Opt. Commun. 27, 424 (2007)

    Article  ADS  Google Scholar 

  11. H. Petek, D.J. Nesbitt, D.C. Darwin, J Chem Phys 86, 1172 (1987)

    Article  ADS  Google Scholar 

  12. M. Yüksek, A. Elmali, M. Karabulut, Opt. Mater. 31, 1663 (2009)

    Article  ADS  Google Scholar 

  13. A. Costela, I.G. Marino, J.M. Figuera, Opt. Commun. 130, 44 (1996)

    Article  ADS  Google Scholar 

  14. V.S. Sukumaran, A. Ramalingam, Spectrochim. Acta, Part A 63, 673 (2006)

    Article  ADS  Google Scholar 

  15. R.K. Rekha, A. Ramalingam, Am J Eng Appl Sci 2, 285 (2009)

    Article  Google Scholar 

  16. Q. Shen, P. Liang, W. Zhang, Opt. Commun. 115, 133 (1995)

    Article  ADS  Google Scholar 

  17. K. Ogusu, Y. Kohtani, H. Shao, Opt. Rev. 3, 232 (1996)

    Article  Google Scholar 

  18. H.A. Badran, Adv. Phys. Theor. Applica. 26, 36 (2013)

  19. T. Xia, D.J. Hagan, M. Sheik-Bahae, Opt. Lett. 19, 317 (1994)

    Article  ADS  Google Scholar 

  20. A.Y. Alla, G.M. Shabeeb, A.Q. Abdullah, Optika 122, 1885 (2011)

    Article  ADS  Google Scholar 

  21. H.A. Badran, A.A. Fregi, Int J Semicond Sci Technol 2, 26 (2012)

    Google Scholar 

  22. H.A. Badran, Q.M. Hassan, A.Y. Alla, C.A. Emshary, Can. J. Phys. 89, 1219 (2011)

    Article  ADS  Google Scholar 

  23. S. Sunita, M. Devendra, S.K. Ghoshal, Opt. Commun. 281, 2923 (2008)

    Article  ADS  Google Scholar 

  24. G.R. Long, S.E. Bialkowski, Anal. Chem. 56, 2806 (1984)

    Article  Google Scholar 

  25. J. Shen, M.L. Baesso, R.D. Snook, J. Appl. Phys. 75, 3738 (1994)

    Article  ADS  Google Scholar 

  26. J. Shen, A.J. Soroka, R.D. Snook, J. Appl. Phys. 78, 700 (1995)

    Article  ADS  Google Scholar 

  27. A.O. Marcano, C. Loper, N. Melikechi, Appl. Phys. Lett. 78, 3415 (2001)

    Article  ADS  Google Scholar 

  28. A. Zakaria, R. Zamiri, P. Vaziri, World Acad Sci Eng Technol 79, 92 (2011)

    Google Scholar 

  29. S.A. Joseph, M. Hari, S. Mathew, Opt. Commun. 283, 313 (2010)

    Article  ADS  Google Scholar 

  30. E.A. Carvalho, A.P. Carmo, M.J.V. Bell, Thin Solid Films 520, 2667 (2012)

    Article  ADS  Google Scholar 

  31. K. Milanchian, H. Tajalli, G.A. Gilani, Opt. Mater. 32, 12 (2009)

    Article  ADS  Google Scholar 

  32. V. Pilla, E.F. Chillcce, A.A.R. Neves, E. Munin, T. Catunda, C.L. Cesar, L.C. Barbosa, J. Mater. Sci. 42, 2304 (2007)

    Article  ADS  Google Scholar 

  33. S.M. Lima, A.A. Andrade, T. Catunda, R. Lebullenger, F. Smektala, Y. Jestin, M.L. Baesso, J Non Cryst Solids 284, 203 (2001)

    Article  ADS  Google Scholar 

  34. M. Sikovec, M. Franko, M. Novic, J. Chromatogr. A 920, 119 (2001)

    Article  Google Scholar 

  35. S.M. Lima, J.A. Sampaio, T. Catunda, A.C. Bento, L.C.M. Miranda, M.L. Baesso, J Non Cryst Solids 273, 215 (2000)

    Article  ADS  Google Scholar 

  36. T. Catunda, M.L. Baesso, Y. Messaddeq, M.A. Aegerter, J Non Cryst Solids 213&214, 225 (1997)

    Article  Google Scholar 

  37. S.M. Lima, T. Catunda, M.L. Baesso, L.D. Vila, Y. Messaddeq, E.B. Stucchi, S.J.L. Ribeiro, J Non Cryst Solids 24, 222 (1999)

    Article  Google Scholar 

  38. Q.M.A. Hassan, H.A. Badran, A.Y. AL-Ahmad, C.A. Emshary, Chin. Phys. B 22, 114209 (2013)

    Article  ADS  Google Scholar 

  39. C.A. Emshary, H.A. Badran, A.Y. AL-Ahmad, Q.M. Ali Hassan, J Mater Environ Sci 4, 319 (2013)

    Google Scholar 

  40. M. Cason, D. Bersani, G. Antonioli, P.P. Lottici, A. Montenero, M. Cavalli, Opt. Mater. 12, 447 (1999)

    Article  ADS  Google Scholar 

  41. J.L. Jiménez-Pérez, A. Cruz-Orea, P. Lomelí Mejia, R. Gutierrez-Fuentes, Int. J. Thermophys. 30, 1396 (2009)

    Article  Google Scholar 

  42. J.L. Jiménez Pérezl, R. Gutierrez Fuentes, J.F. Sanchez Ramirez, A. Cruz-Orea, Eur Phys J Spec Top 153, 159 (2008)

    Article  Google Scholar 

  43. J.W. Fang, S.Y. Zhang, Appl Phys B 67, 633 (1998)

    Article  ADS  Google Scholar 

  44. V. Pilla, A.A. Andrade, S.M. Lima, T. Catunda, D.A. Donatti, D.R. Vollet, A.I. Ruiz, Opt. Mater. 24, 483 (2003)

    Article  ADS  Google Scholar 

  45. H.A. Badran, Results Phys 4, 69 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussain A. Badran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badran, H.A. Thermal properties of a new dye compound measured by thermal lens effect and Z-scan technique. Appl. Phys. B 119, 319–326 (2015). https://doi.org/10.1007/s00340-015-6068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6068-2

Keywords

Navigation