Applied Physics B

, Volume 119, Issue 1, pp 45–53 | Cite as

In situ H2O and temperature detection close to burning biomass pellets using calibration-free wavelength modulation spectroscopy

  • Zhechao Qu
  • Florian M. Schmidt


The design and application of an H2O/temperature sensor based on scanned calibration-free wavelength modulation spectroscopy (CF-WMS) and a single tunable diode laser at 1.4 µm is presented. The sensor probes two H2O absorption peaks in a single scan and simultaneously retrieves H2O concentration and temperature by least-squares fitting simulated 1f-normalized 2f-WMS spectra to measured 2f/1f-WMS signals, with temperature, concentration and nonlinear modulation amplitude as fitting parameters. Given a minimum detectable absorbance of 1.7 × 10−5 cm−1 Hz−1/2, the system is applicable down to an H2O concentration of 0.1 % at 1,000 K and 20 cm path length (200 ppm·m). The temperature in a water-seeded laboratory-scale reactor (670-1220 K at 4 % H2O) was determined within an accuracy of 1 % by comparison with the reactor thermocouple. The CF-WMS sensor was applied to real time in situ measurements of H2O concentration and temperature time histories (0.25-s time resolution) in the hot gases 2–11 mm above biomass pellets during atmospheric combustion in the reactor. Temperatures between 1,200 and 1,600 K and H2O concentrations up to 40 % were detected above the biofuels.


Wheat Straw Tunable Diode Laser Absorption Spectroscopy Energy Wood Wavelength Modulation Spectroscopy Absorption Path Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge financial support by the Swedish Energy Agency (36160-1), the Kempe Foundations (JCK-1316) and the Swedish strategic research program Bio4Energy.


  1. 1.
    A.P. Faaij, Energy Policy 34, 322 (2006)CrossRefGoogle Scholar
  2. 2.
    A. Demirbas, Prog. Energy Combust. 31, 171 (2005)CrossRefGoogle Scholar
  3. 3.
    D. Bostrom, N. Skoglund, A. Grimm, C. Boman, M. Ohman, M. Brostrom, R. Backman, Energy Fuel 26, 85 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Lackner, G. Totschnig, F. Winter, M. Maiorov, D. Garbuzov, J. Connolly, Meas. Sci. Technol. 13, 1545 (2002)CrossRefADSGoogle Scholar
  5. 5.
    D. Bergström, S. Israelsson, M. Öhman, S.-A. Dahlqvist, R. Gref, C. Boman, I. Wästerlund, Fuel Process. Technol. 89, 1324 (2008)CrossRefGoogle Scholar
  6. 6.
    L.J. Hsu, Z.T. Alwahabi, G.J. Nathan, Y. Li, Z.S. Li, M. Alden, Appl. Spectrosc. 65, 684 (2011)CrossRefADSGoogle Scholar
  7. 7.
    T. Sorvajarvi, N. DeMartini, J. Rossi, J. Toivonen, Appl. Spectrosc. 68, 179 (2014)CrossRefADSGoogle Scholar
  8. 8.
    A.K. Biswas, M. Rudolfsson, M. Broström, K. Umeki, Appl. Energy 119, 79 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Proc. Combust. Inst. 30, 89 (2005)CrossRefGoogle Scholar
  10. 10.
    P. Monkhouse, Prog. Energy Combust. 37, 125 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Lackner, Rev. Chem. Eng. 23, 65 (2007)CrossRefGoogle Scholar
  12. 12.
    R.K. Hanson, Proc. Combust. Inst. 33, 1 (2011)CrossRefGoogle Scholar
  13. 13.
    E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, V. Ebert, Appl. Phys. B 75, 237 (2002)CrossRefADSGoogle Scholar
  14. 14.
    K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, Proc. Combust. Inst. 34, 3593 (2013)CrossRefGoogle Scholar
  15. 15.
    O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, V. Ebert, Opt. Express 21, 19951 (2013)CrossRefGoogle Scholar
  16. 16.
    X. Zhou, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 81, 711 (2005)CrossRefADSGoogle Scholar
  17. 17.
    J. Vanderover, M.A. Oehlschlaeger, Appl. Phys. B 99, 353 (2009)CrossRefADSGoogle Scholar
  18. 18.
    P. Kluczynski, J. Gustafsson, A.M. Lindberg, O. Axner, Spectrochim. Acta B 56, 1277 (2001)CrossRefADSGoogle Scholar
  19. 19.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 5546 (2009)CrossRefGoogle Scholar
  20. 20.
    J.R. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, K. Duffin, J. Lightwave Technol. 29, 987 (2011)CrossRefADSGoogle Scholar
  21. 21.
    N. Li, C. S. Weng, Acta Phys. Sin. Chin. Ed. 60, 070701 (2011)Google Scholar
  22. 22.
    C. Lu, D. Yan-Jun, P. Zhi-Min, L. Xiao-Hang, Chin. Phys. B 21, 127803 (2012)CrossRefADSGoogle Scholar
  23. 23.
    S.H. Salati, A. Khorsandi, Appl. Phys. B 116, 521 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Sun, X. Chao, R. Sur, C. S. Goldenstein, J. B. Jeffries, R. K. Hanson, Meas. Sci. Technol. 24, 125203 (2013)Google Scholar
  25. 25.
    C.S. Goldenstein, C.L. Strand, I.A. Schultz, K. Sun, J.B. Jeffries, R.K. Hanson, Appl. Opt. 53, 356 (2014)CrossRefADSGoogle Scholar
  26. 26.
    W. Ren, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 21, 105603 (2010)CrossRefADSGoogle Scholar
  27. 27.
    C.S. Goldenstein, C.A. Almodóvar, J.B. Jeffries, R.K. Hanson, C.M. Brophy, Meas. Sci. Technol. 25, 105104 (2014)CrossRefADSGoogle Scholar
  28. 28.
    I.A. Schultz, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, R.D. Rockwell, C.P. Goyne, J. Propuls. Power 30, 1595 (2014)CrossRefGoogle Scholar
  29. 29.
    K. Sun, R. Sur, J.B. Jeffries, R.K. Hanson, T. Clark, J. Anthony, S. Machovec, J. Northington, Appl. Phys. B 117, 411 (2014)CrossRefADSGoogle Scholar
  30. 30.
    T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002)CrossRefADSGoogle Scholar
  31. 31.
    M. Andersson, L. Persson, T. Svensson, S. Svanberg, Rev. Sci. Instrum. 78, 113107 (2007)CrossRefADSGoogle Scholar
  32. 32.
    X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 14, 1459 (2003)CrossRefADSGoogle Scholar
  33. 33.
    L. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. LeRoy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)CrossRefADSGoogle Scholar
  34. 34.
    Y.B. Yang, V.N. Sharifi, J. Swithenbank, L. Ma, L.I. Darvell, J.M. Jones, M. Pourkashanian, A. Williams, Energy Fuel 22, 306 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Thermochemical Energy Conversion Laboratory, Department of Applied Physics and ElectronicsUmeå UniversityUmeåSweden

Personalised recommendations