Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection

Abstract

Noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS) is a recently developed technique that utilizes phase modulation to obtain immunity to frequency-to-amplitude noise conversion by the cavity modes and yields high absorption sensitivity over a broad spectral range. We describe the principles of the technique and discuss possible comb-cavity matching solutions. We present a theoretical description of NICE-OFCS signals detected with a Fourier transform spectrometer (FTS) and validate the model by comparing it to experimental CO2 spectra around 1,575 nm. Our system is based on an Er:fiber femtosecond laser locked to a cavity and phase-modulated at a frequency equal to a multiple of the cavity free spectral range (FSR). The NICE-OFCS signal is detected by a fast-scanning FTS equipped with a high-bandwidth commercial detector. We demonstrate a simple method of passive locking of the modulation frequency to the cavity FSR that significantly improves the long-term stability of the system, allowing averaging times on the order of minutes. Using a cavity with a finesse of ~9,000, we obtain absorption sensitivity of 6.4 × 10−11 cm−1 Hz−1∕2 per spectral element and concentration detection limit for CO2 of 450 ppb Hz−1/2, determined by multiline fitting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    T. Gherman, D. Romanini, Opt. Express 10, 1033 (2002)

    Article  ADS  Google Scholar 

  2. 2.

    M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Science 311, 1595 (2006)

    Article  ADS  Google Scholar 

  3. 3.

    B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hansch, N. Picque, Nat. Photonics 4, 55 (2010)

    Article  ADS  Google Scholar 

  4. 4.

    A.J. Fleisher, B.J. Bjork, T.Q. Bui, K.C. Cossel, M. Okumura, J. Ye, J. Phys. Chem. Lett. 5, 2241 (2014)

    Article  Google Scholar 

  5. 5.

    M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, J. Ye, Opt. Express 16, 2387 (2008)

    Article  ADS  Google Scholar 

  6. 6.

    A. Foltynowicz, P. Maslowski, A.J. Fleisher, B.J. Bjork, J. Ye, Appl. Phys. B 110, 163 (2013)

    Article  ADS  Google Scholar 

  7. 7.

    C. Abd Alrahman, A. Khodabakhsh, F.M. Schmidt, Z. Qu, A. Foltynowicz, Opt. Express 22, 13889 (2014)

    Article  ADS  Google Scholar 

  8. 8.

    K.C. Cossel, F. Adler, K.A. Bertness, M.J. Thorpe, J. Feng, M.W. Raynor, J. Ye, Appl. Phys. B 100, 917 (2010)

    Article  ADS  Google Scholar 

  9. 9.

    R. Grilli, G. Mejean, S. Kassi, I. Ventrillard, C. Abd Alrahman, E. Fasci, D. Romanini, Appl. Phys. B 107, 205 (2012)

    Article  ADS  Google Scholar 

  10. 10.

    M.J. Thorpe, J. Ye, Appl. Phys. B 91, 397 (2008)

    Article  ADS  Google Scholar 

  11. 11.

    F. Adler, M.J. Thorpe, K.C. Cossel, J. Ye, Annu. Rev. Anal. Chem. 3, 175 (2010)

    Article  Google Scholar 

  12. 12.

    A. Foltynowicz, P. Maslowski, T. Ban, F. Adler, K.C. Cossel, T.C. Briles, J. Ye, Faraday Disc. 150, 23 (2011)

    Article  ADS  Google Scholar 

  13. 13.

    P. Maslowski, K.C. Cossel, A. Foltynowicz, and J. Ye: Cavity-enhanced direct frequency comb spectroscopy, pp. 271–321 in Cavity-Enhanced Spectroscopy and Sensing, vol. 179 of Springer Series in Optical Science, H.P. Loock and G. Gagliardi eds. (Springer, 2014)

  14. 14.

    S.A. Diddams, L. Hollberg, V. Mbele, Nature 445, 627 (2007)

    Article  Google Scholar 

  15. 15.

    C. Gohle, B. Stein, A. Schliesser, T. Udem, T.W. Hansch, Phys. Rev. Lett. 99, 263902 (2007)

    Article  ADS  Google Scholar 

  16. 16.

    R. Grilli, G. Mejean, C. Abd Alrahman, I. Ventrillard, S. Kassi, D. Romanini, Phys. Rev. A 85, 051804 (2012)

    Article  ADS  Google Scholar 

  17. 17.

    L. Rutkowski, J. Morville, Opt. Lett. 39, 6664 (2014)

    Article  ADS  Google Scholar 

  18. 18.

    J. Mandon, G. Guelachvili, N. Picque, Nat. Photonics 3, 99 (2009)

    Article  ADS  Google Scholar 

  19. 19.

    A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, J. Ye, Phys. Rev. Lett. 107, 233002 (2011)

    Article  ADS  Google Scholar 

  20. 20.

    S. Schiller, Opt. Lett. 27, 766 (2002)

    Article  ADS  Google Scholar 

  21. 21.

    I. Coddington, W.C. Swann, N.R. Newbury, Phys. Rev. Lett. 100, 013902 (2008)

    Article  ADS  Google Scholar 

  22. 22.

    F. Adler, P. Maslowski, A. Foltynowicz, K.C. Cossel, T.C. Briles, I. Hartl, J. Ye, Opt. Express 18, 21861 (2010)

    Article  ADS  Google Scholar 

  23. 23.

    S. Kassi, K. Didriche, C. Lauzin, X.D.D. Vaernewijckb, A. Rizopoulos, M. Herman, Spectroc. Acta A 75, 142 (2010)

    Article  ADS  Google Scholar 

  24. 24.

    V.V. Goncharov, G.E. Hall, Opt. Lett. 37, 2406 (2012)

    Article  Google Scholar 

  25. 25.

    A. Khodabakhsh, C. Abd Alrahman, A. Foltynowicz, Opt. Lett. 39, 5034 (2014)

    Article  ADS  Google Scholar 

  26. 26.

    J. Ye, L.S. Ma, J.L. Hall, J. Opt. Soc. Am. B 15, 6 (1998)

    Article  ADS  Google Scholar 

  27. 27.

    G.C. Bjorklund, Opt. Lett. 5, 15 (1980)

    Article  ADS  Google Scholar 

  28. 28.

    F.M. Schmidt, A. Foltynowicz, W.G. Ma, O. Axner, J. Opt. Soc. Am. B 24, 1392 (2007)

    Article  ADS  Google Scholar 

  29. 29.

    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)

    Article  ADS  Google Scholar 

  30. 30.

    W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, Y. Le Coq, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 432 (2012)

    Article  Google Scholar 

  31. 31.

    P. Ehlers, I. Silander, O. Axner, J. Opt. Soc. Am. B 31, 2051 (2014)

    Article  Google Scholar 

  32. 32.

    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Mueller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)

    Article  ADS  Google Scholar 

  33. 33.

    P. Werle, R. Mucke, F. Slemr, Appl. Phys. B 57, 131 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Swedish Research Council (621-2012-3650), Swedish Foundation for Strategic Research (ICA12-0031), the Carl Trygger’s Foundation (CTS12:131), and the Faculty of Science and Technology, Umeå University. The authors thank Piotr Masłowski, Ticijana Ban, and Ove Axner for useful discussions about the NICE-OFCS principles.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Foltynowicz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khodabakhsh, A., Johansson, A.C. & Foltynowicz, A. Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection. Appl. Phys. B 119, 87–96 (2015). https://doi.org/10.1007/s00340-015-6010-7

Download citation

Keywords

  • Cavity Mode
  • Free Spectral Range
  • Optical Path Difference
  • Fourier Transform Spectrometry
  • Absorption Sensitivity