Abstract
Noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS) is a recently developed technique that utilizes phase modulation to obtain immunity to frequency-to-amplitude noise conversion by the cavity modes and yields high absorption sensitivity over a broad spectral range. We describe the principles of the technique and discuss possible comb-cavity matching solutions. We present a theoretical description of NICE-OFCS signals detected with a Fourier transform spectrometer (FTS) and validate the model by comparing it to experimental CO2 spectra around 1,575 nm. Our system is based on an Er:fiber femtosecond laser locked to a cavity and phase-modulated at a frequency equal to a multiple of the cavity free spectral range (FSR). The NICE-OFCS signal is detected by a fast-scanning FTS equipped with a high-bandwidth commercial detector. We demonstrate a simple method of passive locking of the modulation frequency to the cavity FSR that significantly improves the long-term stability of the system, allowing averaging times on the order of minutes. Using a cavity with a finesse of ~9,000, we obtain absorption sensitivity of 6.4 × 10−11 cm−1 Hz−1∕2 per spectral element and concentration detection limit for CO2 of 450 ppb Hz−1/2, determined by multiline fitting.
This is a preview of subscription content, access via your institution.





References
- 1.
T. Gherman, D. Romanini, Opt. Express 10, 1033 (2002)
- 2.
M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Science 311, 1595 (2006)
- 3.
B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hansch, N. Picque, Nat. Photonics 4, 55 (2010)
- 4.
A.J. Fleisher, B.J. Bjork, T.Q. Bui, K.C. Cossel, M. Okumura, J. Ye, J. Phys. Chem. Lett. 5, 2241 (2014)
- 5.
M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, J. Ye, Opt. Express 16, 2387 (2008)
- 6.
A. Foltynowicz, P. Maslowski, A.J. Fleisher, B.J. Bjork, J. Ye, Appl. Phys. B 110, 163 (2013)
- 7.
C. Abd Alrahman, A. Khodabakhsh, F.M. Schmidt, Z. Qu, A. Foltynowicz, Opt. Express 22, 13889 (2014)
- 8.
K.C. Cossel, F. Adler, K.A. Bertness, M.J. Thorpe, J. Feng, M.W. Raynor, J. Ye, Appl. Phys. B 100, 917 (2010)
- 9.
R. Grilli, G. Mejean, S. Kassi, I. Ventrillard, C. Abd Alrahman, E. Fasci, D. Romanini, Appl. Phys. B 107, 205 (2012)
- 10.
M.J. Thorpe, J. Ye, Appl. Phys. B 91, 397 (2008)
- 11.
F. Adler, M.J. Thorpe, K.C. Cossel, J. Ye, Annu. Rev. Anal. Chem. 3, 175 (2010)
- 12.
A. Foltynowicz, P. Maslowski, T. Ban, F. Adler, K.C. Cossel, T.C. Briles, J. Ye, Faraday Disc. 150, 23 (2011)
- 13.
P. Maslowski, K.C. Cossel, A. Foltynowicz, and J. Ye: Cavity-enhanced direct frequency comb spectroscopy, pp. 271–321 in Cavity-Enhanced Spectroscopy and Sensing, vol. 179 of Springer Series in Optical Science, H.P. Loock and G. Gagliardi eds. (Springer, 2014)
- 14.
S.A. Diddams, L. Hollberg, V. Mbele, Nature 445, 627 (2007)
- 15.
C. Gohle, B. Stein, A. Schliesser, T. Udem, T.W. Hansch, Phys. Rev. Lett. 99, 263902 (2007)
- 16.
R. Grilli, G. Mejean, C. Abd Alrahman, I. Ventrillard, S. Kassi, D. Romanini, Phys. Rev. A 85, 051804 (2012)
- 17.
L. Rutkowski, J. Morville, Opt. Lett. 39, 6664 (2014)
- 18.
J. Mandon, G. Guelachvili, N. Picque, Nat. Photonics 3, 99 (2009)
- 19.
A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, J. Ye, Phys. Rev. Lett. 107, 233002 (2011)
- 20.
S. Schiller, Opt. Lett. 27, 766 (2002)
- 21.
I. Coddington, W.C. Swann, N.R. Newbury, Phys. Rev. Lett. 100, 013902 (2008)
- 22.
F. Adler, P. Maslowski, A. Foltynowicz, K.C. Cossel, T.C. Briles, I. Hartl, J. Ye, Opt. Express 18, 21861 (2010)
- 23.
S. Kassi, K. Didriche, C. Lauzin, X.D.D. Vaernewijckb, A. Rizopoulos, M. Herman, Spectroc. Acta A 75, 142 (2010)
- 24.
V.V. Goncharov, G.E. Hall, Opt. Lett. 37, 2406 (2012)
- 25.
A. Khodabakhsh, C. Abd Alrahman, A. Foltynowicz, Opt. Lett. 39, 5034 (2014)
- 26.
J. Ye, L.S. Ma, J.L. Hall, J. Opt. Soc. Am. B 15, 6 (1998)
- 27.
G.C. Bjorklund, Opt. Lett. 5, 15 (1980)
- 28.
F.M. Schmidt, A. Foltynowicz, W.G. Ma, O. Axner, J. Opt. Soc. Am. B 24, 1392 (2007)
- 29.
R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)
- 30.
W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, Y. Le Coq, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 432 (2012)
- 31.
P. Ehlers, I. Silander, O. Axner, J. Opt. Soc. Am. B 31, 2051 (2014)
- 32.
L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Mueller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)
- 33.
P. Werle, R. Mucke, F. Slemr, Appl. Phys. B 57, 131 (1993)
Acknowledgments
This project was supported by the Swedish Research Council (621-2012-3650), Swedish Foundation for Strategic Research (ICA12-0031), the Carl Trygger’s Foundation (CTS12:131), and the Faculty of Science and Technology, Umeå University. The authors thank Piotr Masłowski, Ticijana Ban, and Ove Axner for useful discussions about the NICE-OFCS principles.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Khodabakhsh, A., Johansson, A.C. & Foltynowicz, A. Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection. Appl. Phys. B 119, 87–96 (2015). https://doi.org/10.1007/s00340-015-6010-7
Received:
Accepted:
Published:
Issue Date:
Keywords
- Cavity Mode
- Free Spectral Range
- Optical Path Difference
- Fourier Transform Spectrometry
- Absorption Sensitivity