Applied Physics B

, Volume 119, Issue 1, pp 55–64 | Cite as

Novel utilisation of a circular multi-reflection cell applied to materials ageing experiments

  • D. A. Knox
  • A. K. King
  • E. D. McNaghten
  • S. J. Brooks
  • P. A. Martin
  • S. M. Pimblott
Article

Abstract

We report on the novel utilisation of a circular multi-reflection (CMR) cell applied to materials ageing experiments. This enabled trace gas detection within a narrow interfacial region located between two sample materials and remotely interrogated with near-infrared sources combined with fibre-optic coupling. Tunable diode laser absorption spectroscopy was used to detect water vapour and carbon dioxide at wavelengths near 1,358 and 2,004 nm, respectively, with corresponding detection limits of 7 and 1,139 ppm m Hz−0.5. The minimum detectable absorption was estimated to be 2.82 × 10−3 over a 1-s average. In addition, broadband absorption spectroscopy was carried out for the detection of acetic acid, using a super-luminescent light emitting diode centred around 1,430 nm. The 69 cm measurement pathlength was limited by poor manufacturing tolerances of the spherical CMR mirrors and the consequent difficulty of collecting all the cell output light.

References

  1. 1.
    M. Patel, A.R. Skinner, Polym. Degrad. Stab. 73, 399 (2001)CrossRefGoogle Scholar
  2. 2.
    M.L. Thoma, R. Kaschow, F.J. Hindeland, Shock Waves 4, 51 (1994)CrossRefADSGoogle Scholar
  3. 3.
    M. Tonomura, H. Miyazawa, T. Nakamura, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, in Lasers and Electro-Optics, CLEO/Pacific Rim Conference (2005)Google Scholar
  4. 4.
    Y. Kato, J. Sato, T. Nakamura, M. Endo, S. Yamaguchi, K. Nanril, T. Fujioka, in Lasers and Electro-Optics, CLEO/Pacific Rim Conference (2007)Google Scholar
  5. 5.
    J. Ofner, H.-U. Krüger, C. Zetzsch, Appl. Opt. 49, 5001 (2010)CrossRefADSGoogle Scholar
  6. 6.
    A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, L. Emmenegger, Appl. Phys. B 109, 461 (2012)CrossRefADSGoogle Scholar
  7. 7.
    B. Tuzson, M. Mangold, H. Looser, A. Manninen, L. Emmenegger, Opt. Lett. 38, 257 (2013)CrossRefADSGoogle Scholar
  8. 8.
    P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H.P. Herzig, P. Wägli, A. Homsy, N.F. d Rooi, A. Wirthmueller, D. Hofstetter, H. Looser, J. Faist Anal. 139, 2027 (2014)CrossRefGoogle Scholar
  9. 9.
    J.U. White, J. Opt. Soc. Am. 32, 285 (1942)CrossRefADSGoogle Scholar
  10. 10.
    D. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964)CrossRefADSGoogle Scholar
  11. 11.
    J.B. McManus, P.L. Kebabian, M.S. Zahniser, Appl. Opt. 34, 3336 (1995)CrossRefADSGoogle Scholar
  12. 12.
    L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J.-Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Simeckova, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J.V. Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)CrossRefADSGoogle Scholar
  13. 13.
    P. Werle, R. Mücke, F. Slemr, Appl. Phys. B 57, 131 (1993)CrossRefADSGoogle Scholar

Copyright information

© British Crown Owned Copyright 2015/AWE 2015

Authors and Affiliations

  • D. A. Knox
    • 1
  • A. K. King
    • 1
  • E. D. McNaghten
    • 1
  • S. J. Brooks
    • 1
  • P. A. Martin
    • 2
  • S. M. Pimblott
    • 3
  1. 1.AWEReadingUK
  2. 2.School of Chemical Engineering and Analytical ScienceUniversity of ManchesterManchesterUK
  3. 3.School of ChemistryUniversity of ManchesterManchesterUK

Personalised recommendations