Skip to main content
Log in

Influence of heat transfer on nodule height of microstructured silicon fabricated by femtosecond laser pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

By experiments and theory, we investigate the influence of heat transfer across a gas–solid interface on the nodule height of microstructured silicon fabricated under femtosecond laser pulses. By changing the pressure of the vacuum system, a fast-changing spread in height is found. This is determined by the different heat-transfer flux across the gas–solid interface for different Knudsen-number regimes. Heat transfer affects the energy remaining in the bulk silicon, which determines nodule formation and corresponding height. The rate of change in the heat-transfer flux induces a negative rate of change in the nodule height. These results are important when optimizing the surface microstructure for silicon-based photoelectron devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Younkin, J.E. Carey, E. Mazur, J.A. Levinson, C.M. Friend, J. Appl. Phys. 93, 2626 (2003)

    Article  ADS  Google Scholar 

  2. M.A. Sheehy, L. Winston, J.E. Carey, C.M. Friend, E. Mazur, Chem. Mater. 17, 3582 (2005)

    Article  Google Scholar 

  3. T. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73, 1673 (1998)

    Article  ADS  Google Scholar 

  4. Y. Peng, M. Hong, Y. Zhou, D. Fang, X. Chen, B. Cai, Y. Zhu, Appl. Phys. Express 6, 051303 (2013)

    Article  ADS  Google Scholar 

  5. J. Yang, Y. Yang, B. Zhao, Y. Wang, X. Zhu, Appl. Phys. B 106, 349 (2012)

    Article  ADS  Google Scholar 

  6. Y. Peng, D.S. Zhang, H.Y. Chen, Y. Wen, S.D. Luo, L. Chen, K.J. Chen, K.J. Chen, Y.M. Zhu, Appl. Opt. 51, 635 (2012)

    Article  ADS  Google Scholar 

  7. B.K. Nayak, V.V. Iyengar, M.C. Gupta, Prog. Photovolt. 19, 631 (2011)

    Article  Google Scholar 

  8. H.Y. Chen, G.D. Yuan, Y. Peng, M. Hong, Y.B. Zhang, Y. Zhang, Z.Q. Liu, J.X. Wang, B. Cai, Y.M. Zhu, J.M. Li, Appl. Phys. Lett. 104, 193904 (2014)

    Article  ADS  Google Scholar 

  9. H.M. Branz, V.E. Yost, S. Ward, K.M. Jones, B. To, P. Stradins, Appl. Phys. Lett. 94, 231121 (2009)

    Article  ADS  Google Scholar 

  10. S. Zhang, Y. Li, G. Feng, B. Zhu, S. Xiao, L. Zhou, L. Zhao, Opt. Express 19, 20462 (2011)

    Article  ADS  Google Scholar 

  11. H. Nakanishi, S. Fujiwara, K. Takayama, I. Kawayama, H. Murakami, M. Tonouchi, Appl. Phys. Express 5, 112301 (2012)

    Article  ADS  Google Scholar 

  12. P. Hoyer, M. Theuer, R. Beigang, E.-B. Kley, Appl. Phys. Lett. 93, 091106 (2008)

    Article  ADS  Google Scholar 

  13. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049 (2008)

    Article  Google Scholar 

  14. T. Baldacchini, J.E. Carey, M. Zhou, E. Mazur, Langmuir 22, 4917 (2006)

    Article  Google Scholar 

  15. H.R. Dehghanpour, P. Parvin, B. Sajad, S.S. Nour-Azar, Appl. Surf. Sci. 255, 4664 (2009)

    Article  ADS  Google Scholar 

  16. T.H. Her, R.J. Finlay, C. Wu, E. Mazur, Appl. Phys. A 70, 383 (2000)

    Article  ADS  Google Scholar 

  17. C.B. Simmons, A.J. Akey, J.J. Krich, J.T. Sullivan, D. Recht, M.J. Aziz, T. Buonassisi, J. Appl. Phys. 114, 243514 (2013)

    Article  ADS  Google Scholar 

  18. R. Torres, V. Vervisch, M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, J. Ferreira, D. Barakel, S. Bastide, F. Torregrosa, H. Etienne, L. Roux, J. Optoelectron. Adv. Mater. 12, 621 (2010)

    Google Scholar 

  19. Y. Peng, X. Chen, Y. Zhou, G. Xu, B. Cai, J. Xu, R. Henderson, J. Dai, Y. Zhu, J. Appl. Phys. 116, 073102 (2014)

    Article  ADS  Google Scholar 

  20. P. Banerji, Appl. Surf. Sci. 253, 5129 (2007)

    Article  ADS  Google Scholar 

  21. S. Liu, J. Zhu, Y. Liu, L. Zhao, Mater. Lett. 62, 3881 (2008)

    Article  Google Scholar 

  22. S. Dannefaer, D. Kerr, C. Craigen, T. Bretagnon, T. Taliercio, A. Foucaran, J. Appl. Phys. 79, 9110 (1996)

    Article  ADS  Google Scholar 

  23. Y. Peng, Y. Wen, D. Zhang, S. Luo, L. Chen, Y. Zhu, Appl. Opt. 50, 4765 (2011)

    Article  ADS  Google Scholar 

  24. Y. Peng, H.Y. Chen, C.G. Zhu, D.S. Zhang, Y.Y. Zhou, H. Xiang, B. Cai, Y.M. Zhu, Mater. Lett. 83, 127 (2012)

    Article  Google Scholar 

  25. G.S. Springer, Heat transfer in rarefied gases, in Advances in Heat Transfer, vol. 7, Academic Press, ed. by J.P. Hartnett, T.F. Irvine Jr. (New York, NY, 1971), pp. 163–218

    Google Scholar 

  26. Y. Demirel, S.C. Saxena, Energy 21, 99 (1996)

    Article  Google Scholar 

  27. K.D. Kihm, Near-Field Characterization of Micro/Nano-Scaled Fluid Flows (Springer, Berlin, 2011)

    Book  Google Scholar 

  28. C. Cheng, W. Fan, J. Cao, S. Ryu, J. Li, C.P. Grigoropoulos, J. Wu, ACS Nano 5, 10102 (2011)

    Article  Google Scholar 

  29. W.M. Trott, J.N. Castaneda, J.R. Torczynski, M.A. Gallis, D.J. Rader, Rev. Sci. Instrum. 82, 035120 (2011)

    Article  ADS  Google Scholar 

  30. D. von der Linde, K. Sokolowski-Tinten, J. Bialkowski, Appl. Surf. Sci. 109, 1 (1997)

    Article  ADS  Google Scholar 

  31. B.R. Tull, J.E. Carey, E. Mazur, J.P. Mcdonald, S.M. Yalisove, MRS Bull. 31, 626 (2006)

    Article  Google Scholar 

  32. J.H. Marburger, Prog. Quantum Electron. 4, 35 (1975)

    Article  ADS  Google Scholar 

  33. S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V.P. Kandidov, O.G. Kosareva, H. Schroeder, Can. J. Phys. 83, 863 (2005)

    Article  ADS  Google Scholar 

  34. A.Y. Vorobyev, C. Guo, Nat. Sci. 3, 488 (2011)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by National Natural Science Foundation of China (11104186, 61138001), Program of Shanghai Subject Chief Scientist (14XD1403000), Shanghai Basic Research Key Project (12JC1407100), “Chen Guang” Project of Shanghai Municipal Education Commission and Educational Development Foundation (12CG54), and State Scholarship Fund (201308310172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiMing Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Chen, X., Zhou, Y. et al. Influence of heat transfer on nodule height of microstructured silicon fabricated by femtosecond laser pulses. Appl. Phys. B 118, 327–331 (2015). https://doi.org/10.1007/s00340-014-5994-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5994-8

Keywords

Navigation