Abstract
By experiments and theory, we investigate the influence of heat transfer across a gas–solid interface on the nodule height of microstructured silicon fabricated under femtosecond laser pulses. By changing the pressure of the vacuum system, a fast-changing spread in height is found. This is determined by the different heat-transfer flux across the gas–solid interface for different Knudsen-number regimes. Heat transfer affects the energy remaining in the bulk silicon, which determines nodule formation and corresponding height. The rate of change in the heat-transfer flux induces a negative rate of change in the nodule height. These results are important when optimizing the surface microstructure for silicon-based photoelectron devices.
This is a preview of subscription content, access via your institution.



References
R. Younkin, J.E. Carey, E. Mazur, J.A. Levinson, C.M. Friend, J. Appl. Phys. 93, 2626 (2003)
M.A. Sheehy, L. Winston, J.E. Carey, C.M. Friend, E. Mazur, Chem. Mater. 17, 3582 (2005)
T. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73, 1673 (1998)
Y. Peng, M. Hong, Y. Zhou, D. Fang, X. Chen, B. Cai, Y. Zhu, Appl. Phys. Express 6, 051303 (2013)
J. Yang, Y. Yang, B. Zhao, Y. Wang, X. Zhu, Appl. Phys. B 106, 349 (2012)
Y. Peng, D.S. Zhang, H.Y. Chen, Y. Wen, S.D. Luo, L. Chen, K.J. Chen, K.J. Chen, Y.M. Zhu, Appl. Opt. 51, 635 (2012)
B.K. Nayak, V.V. Iyengar, M.C. Gupta, Prog. Photovolt. 19, 631 (2011)
H.Y. Chen, G.D. Yuan, Y. Peng, M. Hong, Y.B. Zhang, Y. Zhang, Z.Q. Liu, J.X. Wang, B. Cai, Y.M. Zhu, J.M. Li, Appl. Phys. Lett. 104, 193904 (2014)
H.M. Branz, V.E. Yost, S. Ward, K.M. Jones, B. To, P. Stradins, Appl. Phys. Lett. 94, 231121 (2009)
S. Zhang, Y. Li, G. Feng, B. Zhu, S. Xiao, L. Zhou, L. Zhao, Opt. Express 19, 20462 (2011)
H. Nakanishi, S. Fujiwara, K. Takayama, I. Kawayama, H. Murakami, M. Tonouchi, Appl. Phys. Express 5, 112301 (2012)
P. Hoyer, M. Theuer, R. Beigang, E.-B. Kley, Appl. Phys. Lett. 93, 091106 (2008)
V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049 (2008)
T. Baldacchini, J.E. Carey, M. Zhou, E. Mazur, Langmuir 22, 4917 (2006)
H.R. Dehghanpour, P. Parvin, B. Sajad, S.S. Nour-Azar, Appl. Surf. Sci. 255, 4664 (2009)
T.H. Her, R.J. Finlay, C. Wu, E. Mazur, Appl. Phys. A 70, 383 (2000)
C.B. Simmons, A.J. Akey, J.J. Krich, J.T. Sullivan, D. Recht, M.J. Aziz, T. Buonassisi, J. Appl. Phys. 114, 243514 (2013)
R. Torres, V. Vervisch, M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, J. Ferreira, D. Barakel, S. Bastide, F. Torregrosa, H. Etienne, L. Roux, J. Optoelectron. Adv. Mater. 12, 621 (2010)
Y. Peng, X. Chen, Y. Zhou, G. Xu, B. Cai, J. Xu, R. Henderson, J. Dai, Y. Zhu, J. Appl. Phys. 116, 073102 (2014)
P. Banerji, Appl. Surf. Sci. 253, 5129 (2007)
S. Liu, J. Zhu, Y. Liu, L. Zhao, Mater. Lett. 62, 3881 (2008)
S. Dannefaer, D. Kerr, C. Craigen, T. Bretagnon, T. Taliercio, A. Foucaran, J. Appl. Phys. 79, 9110 (1996)
Y. Peng, Y. Wen, D. Zhang, S. Luo, L. Chen, Y. Zhu, Appl. Opt. 50, 4765 (2011)
Y. Peng, H.Y. Chen, C.G. Zhu, D.S. Zhang, Y.Y. Zhou, H. Xiang, B. Cai, Y.M. Zhu, Mater. Lett. 83, 127 (2012)
G.S. Springer, Heat transfer in rarefied gases, in Advances in Heat Transfer, vol. 7, Academic Press, ed. by J.P. Hartnett, T.F. Irvine Jr. (New York, NY, 1971), pp. 163–218
Y. Demirel, S.C. Saxena, Energy 21, 99 (1996)
K.D. Kihm, Near-Field Characterization of Micro/Nano-Scaled Fluid Flows (Springer, Berlin, 2011)
C. Cheng, W. Fan, J. Cao, S. Ryu, J. Li, C.P. Grigoropoulos, J. Wu, ACS Nano 5, 10102 (2011)
W.M. Trott, J.N. Castaneda, J.R. Torczynski, M.A. Gallis, D.J. Rader, Rev. Sci. Instrum. 82, 035120 (2011)
D. von der Linde, K. Sokolowski-Tinten, J. Bialkowski, Appl. Surf. Sci. 109, 1 (1997)
B.R. Tull, J.E. Carey, E. Mazur, J.P. Mcdonald, S.M. Yalisove, MRS Bull. 31, 626 (2006)
J.H. Marburger, Prog. Quantum Electron. 4, 35 (1975)
S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Aközbek, A. Becker, V.P. Kandidov, O.G. Kosareva, H. Schroeder, Can. J. Phys. 83, 863 (2005)
A.Y. Vorobyev, C. Guo, Nat. Sci. 3, 488 (2011)
Acknowledgments
This work was partly supported by National Natural Science Foundation of China (11104186, 61138001), Program of Shanghai Subject Chief Scientist (14XD1403000), Shanghai Basic Research Key Project (12JC1407100), “Chen Guang” Project of Shanghai Municipal Education Commission and Educational Development Foundation (12CG54), and State Scholarship Fund (201308310172).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Peng, Y., Chen, X., Zhou, Y. et al. Influence of heat transfer on nodule height of microstructured silicon fabricated by femtosecond laser pulses. Appl. Phys. B 118, 327–331 (2015). https://doi.org/10.1007/s00340-014-5994-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00340-014-5994-8
Keywords
- Heat Transfer
- Silicon Surface
- Nodule Formation
- Vacuum Pressure
- Solid Interface