Skip to main content

Optimization and complete characterization of a photoacoustic gas detector


We report the complete designing process and realization of a photoacoustic spectrometer. In a first step, the cell design is optimized in order to achieve maximum cell constant and working frequency using a finite element method. Technological and integration constraints are used to define dimensional constraints on the cell. In a second step, a dedicated optical bench is presented along with the photoacoustic cell. The resonator response is then measured using a quantum cascade laser for methane detection and condenser microphones as detectors. The system detection limit is also discussed as it depends not only on the cell response but is also a combination of parameters linked together: environmental noise, microphones characteristics and cell conception. The gas flow required in a dynamic operation of the sensor degrades the detection limit regardless of the microphones quality. Choices on cell conception to minimize gas flow noise are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    M.W. Sigrist, Air Monitoring by Spectroscopic Techniques (Wiley, New York, 1994)

    Google Scholar 

  2. 2.

    S. Schäfer, A. Miklós, P. Hess, Appl. Opt. 36(15), 3202 (1997)

    ADS  Article  Google Scholar 

  3. 3.

    O. Nordhaus, J. Pelzl, Appl. Phys. 25(3), 221 (1981)

    ADS  Article  Google Scholar 

  4. 4.

    B. Baumann, M. Wolff, B. Kost, H. Groninga, Appl. Opt. 46(7), 1120 (2007)

    ADS  Article  Google Scholar 

  5. 5.

    B. Kost, B. Baumann, M. Germer, M. Wolff, M. Rosenkranz, Appl. Phys. B 102(1), 87 (2011)

    ADS  Article  Google Scholar 

  6. 6.

    M. Wolff, B. Kost, B. Baumann, Int. J. Thermophys. 33(10–11), 1953 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    A. Gliere, J. Rouxel, B. Parvitte, S. Boutami, V. Zeninari, Int. J. Thermophys. 34(11), 2119 (2013)

    ADS  Article  Google Scholar 

  8. 8.

    B. Parvitte, C. Risser, R. Vallon, V. Zeninari, Appl. Phys. B 111(3), 383 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    V. Zeninari, V. Kapitanov, D. Courtois, Y. Ponomarev, Infrared Phys. Technol. 40(1), 1 (1999)

    ADS  Article  Google Scholar 

  10. 10.


  11. 11.

    A. Rosencwaig, Photoacoust. Photoacoust. Spectrosc. (Wiley, New York, 1980)

    Google Scholar 

  12. 12.

    L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenko, C. Miller, N.M. Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A.P. Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, J.V. Auwera, J. Quant. Spectrosc. Radiat. Transf. 110(9–10), 533 (2009)

    ADS  Article  Google Scholar 

  13. 13.

    S. Schilt, J.P. Besson, L. Thevenaz, Appl. Phys. B 82(2), 319 (2006)

    ADS  Article  Google Scholar 

  14. 14.

    N. Barreiro, A. Vallespi, G. Santiago, V. Slezak, A. Peuriot, Appl. Phys. B 104(4), 983 (2011)

    ADS  Article  Google Scholar 

  15. 15.

    N. Barreiro, A. Peuriot, G. Santiago, V. Slezak, Appl. Phys. B 108(2), 369 (2012)

    ADS  Article  Google Scholar 

Download references


This work was funded by the ANR ECOTECH Project #ANR-11-ECOT-004 called MIRIADE (2012-2014). Christophe Risser also acknowledges the Aerovia start-up ( for his PhD funding by CIFRE contract.

Author information



Corresponding author

Correspondence to Virginie Zeninari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Risser, C., Parvitte, B., Vallon, R. et al. Optimization and complete characterization of a photoacoustic gas detector. Appl. Phys. B 118, 319–326 (2015).

Download citation


  • Quantum Cascade Laser
  • Finite Element Method Simulation
  • Photoacoustic Cell
  • Helmholtz Resonance
  • Resonant Volume