Advertisement

Applied Physics B

, Volume 118, Issue 2, pp 247–251 | Cite as

Reduction of X-ray generation in high-intensity laser ion acceleration

  • Bastian AurandEmail author
  • Stephan Kuschel
  • Christian Rödel
  • Oliver Jäckel
  • Jens Polz
  • Bentsian Elkin
  • Huanyu Zhao
  • Anupam Karmakar
  • Paul Gibbon
  • Malte C. Kaluza
  • Thomas Kuehl
Article

Abstract

In this paper, we report on measurements of bremsstrahlung in laser ion acceleration experiments from ultra-thin, polymer-based target foils. The influence of laser polarization on the generated \(\gamma\) radiation, the maximum achievable proton energy and the total proton number is investigated. A clear benefit in terms of \(\gamma\) radiation reduction by the use of circular polarized light can be observed. At the same time, the total number of accelerated protons was increased.

Keywords

Amplify Spontaneous Emission Electron Number Density Laser Polarization Target Foil Plasma Mirror 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by the Alliance Program of the Helmholtz Association (HA216/EMMI), by the Thuringian ministry for education, science and culture through EFRE (contract number B715-08006), by the BMBF (contract numbers 03ZIK445 and 03Z1H531), by the DFG (TR18) and by Laserlab Europe (grant agreement no. 284464, ECs 7th framework program). C. R. acknowledges support by the VolkswagenStiftung. We thank F. Ronneberger and B. Beleites for laser support and the GSI target lab for support in target preparation. AK and PG gratefully acknowledge the computational resources awarded under project numbers JJSC01 and JZAM04.

References

  1. 1.
    S.C. Wilks, A.B. Langdon, T.E. Cowan, M. Roth, M. Singh, S. Hatchett, M.H. Key, D. Pennington, A. MacKinnon, R.A. Snavely, Phys. Plas. 8, 542 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    M. Passoni, L. Bertagna, Alessandro Zani, New. J. Phys. 12, 045012 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, W. Fountain, J. Johnson, D.M. Pennington, R.A. Snavely, S.C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S.V. Bulanov, E.M. Campbell, M.D. Perry, H. Powell, PRL 86, 436 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    M. Borghesi, A. Schiavi, D.H. Campbell, M.G. Haines, O. Willi, A.J. MacKinnon, L.A. Gizzi, M. Galimberti, R.J. Clarke, H. Ruhl, Plasma Phys. Control. Fusion 43, A267 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    K. Zeil, M. Baumann, E. Beyreuther, T. Burris-Mog, T.E. Cowan, W. Enghardt, L. Karsch, S.D. Kraft, L. Laschinsky, J. Metzkes, D. Naumburger, M. Oppelt, C. Richter, R. Sauerbrey, M. Schuerer, U. Schramm, J. Pawelke, Appl. Phys. B 110, 437 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    S.V. Bulanov, V.S. Khoroshkov, Plas. Phys. Reports 28, 453 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    T. Tajima, D. Habs, Y. Yan, Rev. Accel. Sci. Techn. 2, 201 (2009)CrossRefGoogle Scholar
  9. 9.
    K. Woods, S. Boucher, F.H. O’Shea, B.M. Hegelich Proceeding of IPAC THPWA50 (2013)Google Scholar
  10. 10.
    A. Macchi, F. Cattani, T.V. Liseykina, F. Cornolti, PRL 94, 165003 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    A. Henig, S. Steinke, M. Schnürer, T. Sokollik, R. Hörlein, D. Kiefer, D. Jung, J. Schreiber, B.M. Hegelich, X.Q. Yan, J. Meyer-ter-Vehn, T. Tajima, P.V. Nickles, W. Sandner, D. Habs, PRL 103, 245003 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    L. Yin, B.J. Albright, B.M. Hegelich, J.C. Fernandez, Lasers and part. Beams 24, 291 (2006)Google Scholar
  13. 13.
    B.M. Hegelich, I. Pomerantz, L. Yin, H.C. Wu, D. Jung, B.J. Albright, D.C. Gautier, S. Letzring, S. Palaniyappan, R. Shah, NJP 15, 085015 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    B. Aurand, S. Kuschel, O. Jäckel, C. Rödel, H. Zhao, S. Herzer, A.E. Paz, J. Bierbach, J. Polz, B. Elkin, G.G. Paulus, A. Karmakar, P. Gibbon, T. Kuehl, M.C. Kaluza, NJP 15, 033031 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    B. Aurand, S. Kuschel, O. Jäckel, C. Rödel, H. Zhao, S. Herzer, A.E. Paz, J. Bierbach, J. Polz, B. Elkin, A. Karmakar, P. Gibbon, M.C. Kaluza, T. Kuehl, Nucl. Inst. Meth. A 740, 033031 (2014)CrossRefGoogle Scholar
  16. 16.
    C. Rödel, M. Heyer, M. Behmke, M. Kübel, O. Jäckel, W. Ziegler, D. Ehrt, M.C. Kaluza, G.G. Paulus, Appl. Phys. B 103, 4329 (2012)Google Scholar
  17. 17.
    B. Aurand, S. Kuschel, C. Rödel, M. Heyer, F. Wunderlich, O. Jäckel, M.C. Kaluza, G.G. Paulus, T. Kuehl, Opt. Exp. 19, 17151 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    B. Aurand, B. Elkin, L.-O. Heim, B. Lommel, B. Kindler, M. Tomut, C. Rödel, S. Kuschel, O. Jäckel, J. Barz, T. Kuehl, J. Polym. Sci. B Polym. Phys. 51, 1355 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    B. Aurand, B. Elkin, L.-O. Heim, B. Lommel, B. Kindler, M. Tomut, C. Rödel, S. Kuschel, O. Jäckel, T. Kuehl, J. Radioanal. Nuc. Chem. 299, 965 (2014)CrossRefGoogle Scholar
  20. 20.
    X.Q. Yan, C. Lin, Z.M. Sheng, Z.Y. Guo, B.C. Liu, Y.R. Lu, J.X. Fang, J.E. Chen, PRL 100, 135003 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    W.L. Kruer, K. Estabrook, Phys. Fluids 28, 430 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    M.N. Quinn, X.H. Yuan, X.X. Lin, D.C. Carroll, O. Tresca, R.J. Gray, M. Coury, C. Li, Y.T. Li, C.M. Brenner, A.P.L. Robinson, D. Neely, B. Zielbauer, B. Aurand, J. Fils, T. Kuehl, P. McKenna, Phys. Plas. 53, 025007 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bastian Aurand
    • 1
    • 2
    • 3
    Email author
  • Stephan Kuschel
    • 3
  • Christian Rödel
    • 4
    • 5
  • Oliver Jäckel
    • 3
  • Jens Polz
    • 3
  • Bentsian Elkin
    • 6
  • Huanyu Zhao
    • 7
  • Anupam Karmakar
    • 8
  • Paul Gibbon
    • 9
  • Malte C. Kaluza
    • 3
    • 4
  • Thomas Kuehl
    • 2
    • 10
  1. 1.Department of PhysicsLund UniversityLundSweden
  2. 2.GSI Helmholtzzentrum für Schwerionenforschung GmbhDarmstadtGermany
  3. 3.Helmholtz Institute JenaJenaGermany
  4. 4.Institute of Optics and Quantum ElectronicsJenaGermany
  5. 5.SLAC National Accelerator LaboratoryMenlo ParkUSA
  6. 6.Fraunhofer Institut für Grenzflächen-und BioverfahrenstechnikStuttgartGermany
  7. 7.Institute of Modern PhysicsChinese Academy of ScienceLanzhouChina
  8. 8.Leibniz Supercomputing CentreGarchingGermany
  9. 9.Institute for Advanced SimulationForschungszentrum Jülich GmbHJülichGermany
  10. 10.Department of PhysicsMainz UniversityMainzGermany

Personalised recommendations