Skip to main content
Log in

Mechanism for laser-induced fluorescence signal generation in a nanoparticle-seeded flow for planar flame thermometry

  • Published:
Applied Physics B Aims and scope Submit manuscript


The mechanism of atomic indium generation for laser-induced fluorescence (LIF) of indium from laser ablation seeding was investigated in a hydrogen/nitrogen non-premixed flame. The morphology and particle size distributions of the ablation products were examined with scanning electron microscopy and transmission electron microscopy. These investigations show that the ablation products comprise complex agglomerates of nano-sized primary particles of indium compounds and micron-sized spherical indium beads. Images of the atomic indium LIF, Mie scattering of ablation products and natural fluorescence emission of indium in the flame were recorded to investigate the mechanism of fluorescence signal generation. The relative contribution of natural fluorescence emission of indium towards the total indium fluorescence signal was assessed by comparing these images. These images also reveal the evolution of ablation products through the flame structure and the correlation between LIF signal and ablation products. It is found that the LIF signal generation is associated with the vapourisation of indium nanoparticles into the gas phase by thermal decomposition in the flame. A further mechanism for thermal decomposition of the nanoparticles was also identified, that of heating the ablation products by in situ laser ablation. This was assessed by means of a second laser, introduced prior to the excitation laser, to reveal that the LIF signal can be enhanced by in situ laser ablation, particularly in the upstream regions of the flame. These findings supersede the mechanism deduced previously by the authors that neutral atomic indium can survive a convection time of the order of tens of seconds and be directly seeded into reacting or non-reacting flows. The possible influences of laser ablation seeding on the nonlinear two-line atomic fluorescence thermometry technique were also assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. K. Kohse-Höinghaus, J.B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, New York, 2002)

    Google Scholar 

  2. G.J. Nathan, P.A.M. Kalt, Z.T. Alwahabi, B.B. Dally, P.R. Medwell, Q.N. Chan, Prog. Energy Combust. Sci. 38(1), 41–61 (2012)

    Article  Google Scholar 

  3. J. Engström, J. Nygren, M. Aldén, C. Kaminski, Opt. Lett. 25(19), 1469–1471 (2000)

    Article  ADS  Google Scholar 

  4. J. Nygren, J. Engström, J. Walewski, C. Kaminski, M. Aldén, Meas. Sci. Technol. 12(8), 1294 (2001)

    Article  ADS  Google Scholar 

  5. C. Kaminski, J. Engström, M. Aldén, Proc. Combust. Inst. 27, 85–93 (1998)

    Article  Google Scholar 

  6. P.R. Medwell, Q.N. Chan, B.B. Dally, S. Mahmoud, Z.T. Alwahabi, G.J. Nathan, Proc. Combust. Inst. 34(2), 3619–3627 (2013)

    Article  Google Scholar 

  7. J.W. Daily, Prog. Energy Combust. Sci. 23(2), 133–199 (1997)

    Article  Google Scholar 

  8. K. Kohse-Höinghaus, Prog. Energy Combust. Sci. 20(3), 203–279 (1994)

    Article  Google Scholar 

  9. R.S. Chrystie, I.S. Burns, J. Hult, C.F. Kaminski, Opt. Lett. 34(16), 2492–2494 (2009)

    Article  ADS  Google Scholar 

  10. I.S. Burns, X. Mercier, M. Wartel, R.S. Chrystie, J. Hult, C.F. Kaminski, Proc. Combust. Inst. 33(1), 799–806 (2011)

    Article  Google Scholar 

  11. P.R. Medwell, Q.N. Chan, B.B. Dally, Z.T. Alwahabi, S. Mahmoud, G.F. Metha, G. Nathan, Appl. Phys. B 107(3), 665–668 (2012)

    Article  ADS  Google Scholar 

  12. Q.N. Chan, P.R. Medwell, B.B. Dally, Z.T. Alwahabi, G.J. Nathan, Appl. Spectrosc. 66(7), 803–809 (2012)

    Article  ADS  Google Scholar 

  13. B. Chakraborty, R. Long, Combust. Flame 12(5), 469–476 (1968)

    Article  Google Scholar 

  14. I. Glassman, Proc. Combust. Inst. 27, 1589–1596 (1998)

    Article  Google Scholar 

  15. P.R. Medwell, A.R. Masri, P.X. Pham, B.B. Dally, G.J. Nathan, Exp. Fluids 55, 1840 (2014)

    Article  Google Scholar 

  16. R. Whiddon, Application of Laser-based Diagnostics to a Prototype Gas Turbine Burner at Selected Pressures. Ph.D. Thesis, Lund University (2014)

  17. S. Lai, J. Guo, V. Petrova, G. Ramanath, L. Allen, Phys. Rev. Lett. 77(1), 99 (1996)

    Article  ADS  Google Scholar 

  18. R.A. Yetter, G.A. Risha, S.F. Son, Proc. Combust. Inst. 32(2), 1819–1838 (2009)

    Article  Google Scholar 

  19. A. Il’in, A. Gromov, V. Vereshchagin, E. Popenko, V. Surgin, H. Lehn, Combust. Explos. Shock Waves 37(6), 664–668 (2001)

    Article  Google Scholar 

  20. Y.-S. Kwon, A.A. Gromov, A.P. Ilyin, E.M. Popenko, G.-H. Rim, Combust. Flame 133(4), 385–391 (2003)

    Article  Google Scholar 

  21. F.E. Kruis, H. Fissan, A. Peled, J. Aerosol Sci. 29(5), 511–535 (1998)

    Article  Google Scholar 

  22. A. Lushnikov, J. Aerosol. Sci. 27, S377–S378 (1996)

    Article  Google Scholar 

  23. S.B. Wen, X. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101(2), 023115 (2007)

    Article  ADS  Google Scholar 

  24. S.B. Wen, X. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101(2), 023114 (2007)

    Article  ADS  Google Scholar 

  25. C. Liu, A Study of Particle Generation During Laser Ablation with Applications. Ph.D. Thesis, University of Califonia, Berkeley (2005)

    Google Scholar 

  26. R. Kelly, J.E. Rothenberg, Nucl. Instrum. Methods. Phys. Res. B. 7, 755–763 (1985)

    Article  ADS  Google Scholar 

  27. R. Webb, J. Dickinson, G. Exarhos, Appl. Spectrosc. 51(5), 707–717 (1997)

    Article  ADS  Google Scholar 

  28. Z.W. Sun, D.H. Gu, G.J. Nathan, Z.T. Alwahabi, B.B. Dally, in Proceedings of the Combustion Institute, 2014. doi:10.1016/j.proci.2014.07.066

Download references


The support of the Centre for Energy Technology (CET) and The University of Adelaide is gratefully acknowledged. The support of the Australian Research Council is also gratefully acknowledged through its Discovery and LIEF schemes.

Author information

Authors and Affiliations


Corresponding author

Correspondence to D. H. Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, D.H., Sun, Z.W., Medwell, P.R. et al. Mechanism for laser-induced fluorescence signal generation in a nanoparticle-seeded flow for planar flame thermometry. Appl. Phys. B 118, 209–218 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: