Applied Physics B

, Volume 118, Issue 1, pp 131–138 | Cite as

Phase-sensitive radial extraction and mass spectrometry of trapped ions in a compact geometry

  • S. Jyothi
  • Tridib Ray
  • S. A. RangwalaEmail author


The detection of trapped atomic and molecular ions of rubidium, by extraction, from our thin-wire electrode-modified spherical Paul trap, is discussed in detail. The compact geometry poses serious challenges and constraints for efficient extraction and reliable detection of ions. The solution to the dual challenge of counting the trapped ions with minimum pileup loss as well as detection that permits reliable mass spectroscopy is experimentally implemented. The details of the ion extraction process are understood by numerical simulation. The experimental and numerical data are compared and found to be in close agreement. The reliability of the technique for future, multi-species experiments, is established, and possible improvements are discussed.


Magneto Optical Trap Extraction Voltage Arrival Time Distribution Channel Electron Multiplier Extraction Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



G. Werth is acknowledged for useful discussions. We acknowledge Sourav Dutta for his inputs in molecular ion production. The authors acknowledge Mr. Narayanaswami and the other members of the RRI machine shop for technically supporting the fabrication of this experiment and Ms. S. Sujatha, RAL, RRI for crucial electronics fabrication.


  1. 1.
    W.W. Smith, O.P. Makarov, J. Lin, J. Mod. Opt. 52, 2253 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    A.T. Grier, M. Cetina, F. Oručević, V. Vuletić, Phys. Rev. Lett. 102, 223201 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    C. Zipkes, S. Palzer, C. Sias, M. Köhl, Nature 464, 388 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    S. Schmid, A. Härter, J.H. Denschlag, Phys. Rev. Lett. 105, 133202 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    W.G. Rellergert, S.T. Sullivan, S. Kotochigova, A. Petrov, K. Chen, S.J. Schowalter, E.R. Hudson, Phys. Rev. Lett. 107, 243201 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    K. Ravi, S. Lee, A. Sharma, G. Werth, S.A. Rangwala, Nat. Commun. 3, 1126 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    F.H.J. Hall, S. Willitsch, Phys. Rev. Lett. 109, 233202 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    K. Blaum, Y.N. Novikov, G. Werth, Contemp. Phys. 51, 149 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    A. Steane, Appl. Phys. B64, 623 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    U. Bissbort, D. Cocks, A. Negretti, Z. Idziaszek, T. Calarco, F. Schmidt-Kaler, W. Hofstetter, R. Gerritsma, Phys. Rev. Lett. 111, 080501 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    T. Ray, S. Jyothi, N.B. Ram, S.A. Rangwala, Appl. Phys. B114, 267 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    S. Jyothi, T. Ray, N. Bhargava Ram, S.A. Rangwala, ArXiv e-prints 1312.2715 (2013)Google Scholar
  13. 13.
    F.G. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps (Springer, Berlin, 2005)Google Scholar
  14. 14.
    M. Holzki, Master’s Thesis (Johannes Gutenberg University, Mainz, 1997)Google Scholar
  15. 15.
    S.J. Schowalter, K. Chen, W.G. Rellergert, S.T. Sullivan, E.R. Hudson, Rev. Sci. Instrum. 83, 043103 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    C. Gabbanini, A. Fioretti, A. Lucchesini, S. Gozzini, M. Mazzoni, Phys. Rev. Lett. 84, 2814 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    A.R.L. Caires, V.A. Nascimento, D.C.J. Rezende, V.S. Bagnato, L.G. Marcassa, Phys. Rev. A71, 043403 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    E. Krishnakumar, S.V.K. Kumar, S.A. Rangwala, S.K. Mitra, J. Phys. B At. Mol. Opt. Phys. 29, L657 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Raman Research InstituteBangaloreIndia

Personalised recommendations