Skip to main content

Advertisement

Log in

A 110-TW multiple-beam laser system with a 5-TW wavelength-tunable auxiliary beam for versatile control of laser-plasma interaction

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A Ti:sapphire laser system has been constructed with two synchronized main beams of 110 TW and 13 TW, and a 5-TW wavelength-tunable synchronized auxiliary beam for versatile control of laser-plasma interaction. The first main beam provides 3.3-J, 30-fs, 810-nm pulses, and the second 450-mJ, 34-fs, 805-nm pulses. The auxiliary beam comes from amplified spectral windows selected from a supercontinuum of high spatial coherence and provides 38-fs pulses with tunable wavelengths (870–920 nm). The two main beams can be focused down to M 2 = 1.2 and 1.1, with 77 and 81 % energy enclosed in the focal spots, respectively. The energy fluctuations are 1.1 and 1.8 %, and the pointing fluctuations are 4.5 and 4.8 μrad, respectively. By using a preamplifier and saturable absorber before the pulse stretcher to suppress amplified spontaneous emission, the temporal contrast of the 110-TW main beam reaches \(4 \times 10^{-10}\) at the −100-ps timescale. Even though the auxiliary beam is generated from a highly nonlinear process, by confining the supercontinuum generation in a single self-trapping filament, a spatial coherence close to the main beams can be achieved. It can be focused down to M 2 = 1.3, with 72 % energy enclosed in the focal spot. The energy fluctuation is 2.6 %, and the pointing fluctuation is 4.7 μrad. The versatility of synchronized multiple-beams with tunable wavelengths, good energy and pointing stability, and the spatiotemporal quality of the laser system has been essential to our experiments in high-harmonic generation, extreme-UV lasers, and laser-wakefield accelerators in which precision control of laser-plasma interaction is facilitated by a concerted sequence of driving pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B.E. Lemoff, C.P.J. Barty, S.E. Harris, Femtosecond-pulse-driven, electron-excited XUV lasers in eight-times-ionized noble gases. Opt. Lett. 19, 569–571 (1994)

    Article  ADS  Google Scholar 

  2. S. Sebban, T. Mocek, D. Ros, L. Upcraft, P. Balcou, R. Haroutunian, G. Grillon, B. Rus, A. Klisnick, A. Carillon, G. Jamelot, C. Valentin, A. Rousse, J.P. Rousseau, L. Notebaert, M. Pittman, D. Hulin, Demonstration of a Ni-Like Kr optical-field-ionization collisional soft X-ray laser at 32.8 nm. Phys. Rev. Lett. 89, 253901 (2002)

    Article  Google Scholar 

  3. T. Mocek, C.M. McKenna, B. Cros, S. Sebban, D.J. Spence, G. Maynard, I. Bettaibi, V. Vorontsov, A.J. Gonsavles, S.M. Hooker, Dramatic enhancement of xuv laser output using a multimode gas-filled capillary waveguide. Phys. Rev. A 71, 013804 (2005)

    Article  Google Scholar 

  4. H.-H. Chu, H.-E. Tsai, M.-C. Chou, L.-S. Yang, J.-Y. Lin, C.-H. Lee, J. Wang, S.-Y. Chen, Collisional excitation soft x-ray laser pumped by optical field ionization in a cluster jet. Phys. Rev. A. 71, 061804 (2005)

    Article  ADS  Google Scholar 

  5. M.-C. Chou, P.-H. Lin, C.-A. Lin, J.-Y. Lin, J. Wang, S.-Y. Chen, Dramatic enhancement of optical-field-ionization collisional-excitation X-ray lasing by an optically preformed plasma waveguide. Phys. Rev. Lett. 99, 063904 (2007)

    Article  Google Scholar 

  6. A. Rundquist, C.G. Durfee III, Z. Chang, C. Herne, S. Backus, M.M. Murnane, H.C. Kapteyn, Phase-matched generation of Coherent soft X-rays. Science 280, 1412–1415 (1998)

    Article  ADS  Google Scholar 

  7. J. Seres, E. Seres, A.J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, F. Krausz, Source of coherent kiloelectronvolt X-rays. Nature 433, 596 (2005)

    Article  ADS  Google Scholar 

  8. E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Single-cycle nonlinear optics. Science 320, 1614–1617 (2008)

    Article  ADS  Google Scholar 

  9. C. Winterfeldt, C. Spielmann, G. Gerber, Colloquium: optimal control of high-harmonic generation. Rev. Mod. Phys. 80, 117–140 (2008)

    Article  ADS  Google Scholar 

  10. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Aliauskas, G. Andriukaitis, T. Baliunas, O.D. Mcke, A. Pugzlys, A. Baltuka, B. Shim, S.E. Schrauth, A. Gaeta, C. Hernndez-Garca, L. Plaja, A. Becker, A. Jaron-Becker, M.M. Murnane, H.C. Kapteyn, Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared Femtosecond lasers. Science 336, 1287–1291 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)

    Article  ADS  Google Scholar 

  12. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J. Rousseau, F. Burgy, V. Malka, A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004)

    Article  ADS  Google Scholar 

  13. C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004)

    Article  ADS  Google Scholar 

  14. S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K. Krushelnick, Monoenergetic beams of relativistic electrons from intense laserplasma interactions. Nature 431, 535–538 (2004)

    Article  ADS  Google Scholar 

  15. A. Rousse, K.T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.-P. Rousseau, D. Umstadter, D. Hulin, Production of a keV X-Ray beam from synchrotron radiation in relativistic laser–plasma interaction. Phys. Rev. Lett. 93, 135005 (2004)

    Article  Google Scholar 

  16. S. Kneip, S.R. Nagel, C. Bellei, N. Bourgeois, A.E. Dangor, A. Gopal, R. Heathcote, S.P.D. Mangles, J.R. Marquès, A. Maksimchuk, P.M. Nilson, K.T. Phuoc, S. Reed, M. Tzoufras, F.S. Tsung, L. Willingale, W.B. Mori, A. Rousse, K. Krushelnick, Z. Najmudin, Observation of synchrotron radiation from electrons accelerated in a Petawatt-Laser-generated plasma cavity. Phys. Rev. Lett. 100, 105006 (2008)

    Article  Google Scholar 

  17. S. Kneip, C. McGuffey, J.L. Martins, S.F. Martins, C. Bellei, V. Chvykov, F. Dollar, R. Fonseca, C. Huntington, G. Kalintchenko, A. Maksimchuk, S.P.D. Mangles, T. Matsuoka, S.R. Nagel, C.A.J. Palmer, J. Schreiber, K.T. Phuoc, A.G.R. Thomas, V. Yanovsky, L.O. Silva, K. Krushelnick, Z. Najmudin, Bright spatially coherent synchrotron X-rays from a table-top source. Nat Phys 6, 980–983 (2010)

    Article  Google Scholar 

  18. B.M. Hegelich, B.J. Albright, J. Cobble, K. Flippo, S. Letzring, M. Paffett, H. Ruhl, J. Schreiber, R.K. Schulze, J.C. Fernández, Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444 (2006)

    Article  ADS  Google Scholar 

  19. H. Schwoerer, S. Pfotenhauer, O. Jäckel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K.W.D. Ledingham, T. Esirkepov, Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445–448 (2006)

    Article  ADS  Google Scholar 

  20. A. Macchi, M. Borghesi, M. Passoni, Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751–793 (2013)

    Article  ADS  Google Scholar 

  21. S.V. Bulanov, T.Z. Esirkepov, D. Habs, F. Pegoraro, T. Tajima, Relativistic laser-matter interaction and relativistic laboratory astrophysics. Eur. Phys. J. D 55, 483–507 (2009)

    Article  ADS  Google Scholar 

  22. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Comm. 56, 219–221 (1985)

    Article  ADS  Google Scholar 

  23. K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, H. Takuma, 100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate. Opt. Lett. 23, 1468–1470 (1998)

    Article  ADS  Google Scholar 

  24. M. Pittman, S. Ferré, J.P. Rousseau, L. Notebaert, J.P. Chambaret, G. Chériaux, Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system. Appl. Phys. Lett. 74, 529–535 (2002)

    Google Scholar 

  25. M.P. Kalachnikov, V. Karpov, H. Schonnagel, W. Sandner, 100-Terawatt Titanium sapphire laser system. Laser Phys 12, 368–374 (2002)

    Google Scholar 

  26. Q. Zhu, H. Peng, X. Wei, X. Huang, X. Zhang, X. Wang, K. Zhou, L. Liu, X. Zeng, X. Wang, Y. Guo, D. Lin, B. Xu, X. Chu, Introduction of SILEX-I Femto-second Ti:sapphire laser facility. J. Phys. Conf. Ser. 72, 012009 (2007)

    Article  ADS  Google Scholar 

  27. V.V. Lozhkarev, G. Freidman, V.N. Ginzburg, E.V. Katin, E.A. Khazanov, A.V. Kirsanov, G.A. Luchinin, A.N. Malshakov, M.A. Martyanov, O.V. Palashov, A.K. Poteomkin, A.M. Sergeev, A.A. Shaykin, I.V. Yakovlev, Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals. Laser Phys. Lett. 4, 421–427 (2007)

    Article  ADS  Google Scholar 

  28. S.H. Batha, R. Aragonez, F.L. Archuleta, T.N. Archuleta, J.F. Benage, J.A. Cobble, J.S. Cowan, V.E. Fatherley, K.A. Flippo, D.C. Gautier, R.P. Gonzales, S.R. Greenfield, B.M. Hegelich, T.R. Hurry, R.P. Johnson, J.L. Kline, S.A. Letzring, E.N. Loomis, F.E. Lopez, S.N. Luo, D.S. Montgomery, J.A. Oertel, D.L. Paisley, S.M. Reid, P.G. Sanchez, A. Seifter, T. Shimada, J.B. Workman, TRIDENT high-energy-density facility experimental capabilities and diagnostics. Rev. Sci. Instrum. 79, 10F305 (2008)

    Google Scholar 

  29. K. Ertel, C. Hooker, S.J. Hawkes, B.T. Parry, J.L. Collier, ASE suppression in a high energy Titanium sapphire amplifier. Opt. Express 16, 8039–8049 (2008)

    Article  ADS  Google Scholar 

  30. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, K. Krushelnick, Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate. Opt. Express 16, 2109–2114 (2008)

    Article  ADS  Google Scholar 

  31. S. Fourmaux, S. Payeur, S. Buffechoux, P. Lassonde, C. St-Pierre, F. Martin, J.C. Kieffer, Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system. Opt. Express 19, 8486–8497 (2011)

    Article  ADS  Google Scholar 

  32. H. Teng, J.-L. Ma, Z.-H. Wang, Y. Zheng, X.-L. Ge, W. Zhang, Z.-Y. Wei, Y.-T. Li, J. Zhang, A 100-TW Ti:sapphire laser system at a repetition rate of 0.1 Hz. Chin. Phys. Lett. 29, 014209 (2012)

    Article  Google Scholar 

  33. H. Kiriyama, T. Shimomura, H. Sasao, Y. Nakai, M. Tanoue, S. Kondo, S. Kanazawa, A.S. Pirozhkov, M. Mori, Y. Fukuda, M. Nishiuchi, M. Kando, S.V. Bulanov, K. Nagashima, M. Yamagiwa, K. Kondo, A. Sugiyama, P.R. Bolton, T. Tajima, N. Miyanaga, Temporal contrast enhancement of petawatt-class laser pulses. Opt. Lett. 37, 3363–3365 (2012)

    Article  ADS  Google Scholar 

  34. L.A. Gizzi, C. Benedetti, C.A. Cecchetti, G.D. Pirro, A. Gamucci, G. Gatti, A. Giulietti, D. Giulietti, P. Koester, L. Labate, T. Levato, N. Pathak, F. Piastra, Laser-plasma acceleration with FLAME and ILIL ultraintense lasers. Appl. Sci. 3, 559–580 (2013)

    Article  Google Scholar 

  35. M.D. Perry, D. Pennington, B.C. Stuart, G. Tietbohl, J.A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H.T. Powell, M. Vergino, V. Yanovsky, Petawatt laser pulses. Opt. Lett. 24, 160–162 (1999)

    Article  ADS  Google Scholar 

  36. M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, H. Kiriyama, 0.85-PW, 33-fs Ti:sapphire laser. Opt. Lett. 28, 1594–1596 (2003)

    Article  ADS  Google Scholar 

  37. C.N. Danson, P.A. Brummitt, R.J. Clarke, J.L. Collier, B. Fell, A.J. Frackiewicz, S. Hancock, S. Hawkes, C. Hernandez-Gomez, P. Holligan, M.H.R. Hutchinson, A. Kidd, W.J. Lester, I.O. Musgrave, D. Neely, D.R. Neville, P.A. Norreys, D.A. Pepler, C.J. Reason, W. Shaikh, T.B. Winstone, R.W.W. Wyatt, B.E. Wyborn, Vulcan Petawatt-an ultra-high-intensity interaction facility. Nucl. Fusion 44, S239–S246 (2004)

    Article  ADS  Google Scholar 

  38. J.H. Sung, S.K. Lee, T.J. Yu, T.M. Jeong, J. Lee, 0.1 Hz 1.0 PW Ti:sapphire laser. Opt. Lett. 35, 3021–3023 (2010)

    Article  ADS  Google Scholar 

  39. Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, Z. Wei, High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier. Opt. Lett. 36, 3194–3196 (2011)

    Article  ADS  Google Scholar 

  40. T.J. Yu, S.K. Lee, J.H. Sung, J.W. Yoon, T.M. Jeong, J. Lee, Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser. Opt. Express 20, 10807–10815 (2012)

    Article  Google Scholar 

  41. S. Laux, F. Lureau, C. Radier, O. Chalus, F. Caradec, O. Casagrande, E. Pourtal, C. Simon-Boisson, F. Soyer, P. Lebarny, Suppression of parasitic lasing in high energy, high repetition rate Ti:sapphire laser amplifiers. Opt. Lett. 37, 1913–1915 (2012)

    Article  ADS  Google Scholar 

  42. Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, Z. Xu, High-contrast 2.0 Petawatt Ti:sapphire laser system. Opt. Express 21, 29231–29239 (2013)

    Article  Google Scholar 

  43. C. Liu, S. Banerjee, J. Zhang, S. Chen, K. Brown, J. Mills, N. Powers, B. Zhao, G. Golovin, I. Ghebregziabher, et al., Repetitive petawatt-class laser with near-diffraction-limited focal spot and transform-limited pulse duration, in Proceedings of SPIE (International Society for Optics and Photonics, 2013), p. 859919

  44. W. P. Leemansand, J. Daniels, A. Deshmukh, A. J. Gonsalves, A. Magana, H. S. Mao, K. N. D. E. Mittelberger, J. R. Riley, D. Syversrud, C. Toth, N. Ybarrolaza, Bella laser and operations, in Proceedings of PAC2013 pp. 1097–1100 (2013)

  45. Y.-C. Ho, T.-S. Hung, J.-G. Jhou, H. Qayyum, W.-H. Chen, H.-H. Chu, J.-Y. Lin, J. Wang, S.-Y. Chen, Induction of electron injection and betatron oscillation in a plasma-waveguide-based laser wakefield accelerator by modification of waveguide structure. Phys. Plasmas 20, 083104 (2013)

    Article  Google Scholar 

  46. C.-H. Yang, S.-C. Kao, J. Wang, H.-H. Chu, Synthesis of a beat-wave pulse train with increasing pulse separation for Quasi-phase-matched high-harmonic generation. J. Opt. Soc. Am. B 31, 1793–1800 (2014)

    Article  ADS  Google Scholar 

  47. J.F. Xia, J. Song, D. Strickland, Development of a dual-wavelength Ti: sapphire multi-pass amplifier and its application to intense mid-infrared generation. Opt. Comm. 206, 149–157 (2002)

    Article  ADS  Google Scholar 

  48. K. Yamakawa, C.P.J. Barty, Two-color chirped-pulse amplification in an ultrabroadband Ti:sapphire ring regenerative amplifier. Opt. Lett. 28, 2402–2404 (2003)

    Article  ADS  Google Scholar 

  49. T. Witte, K.L. Kompa, M. Motzkus, Femtosecond pulse shaping in the mid infrared by difference-frequency mixing. Appl. Phys. B 76, 467–471 (2003)

    Article  ADS  Google Scholar 

  50. T. Tajima, High energy laser plasma accelerators. Laser Part. Beams 3, 351–413 (1985)

    Article  ADS  Google Scholar 

  51. D. Umstadter, E. Esarey, J. Kim, Nonlinear plasma waves resonantly driven by optimized laser pulse trains. Phys. Rev. Lett. 72, 1224–1227 (1994)

    Article  ADS  Google Scholar 

  52. Y. Mori, Y. Kitagawa, Double-line terawatt OPCPA laser system for exciting beat wave oscillations. Appl. Phys. B 110, 57–64 (2013)

    Article  ADS  Google Scholar 

  53. L.-L. Yu, E. Esarey, C.B. Schroeder, J.-L. Vay, C. Benedetti, C.G.R. Geddes, M. Chen, W.P. Leemans, Two-color laser-ionization injection. Phys. Rev. Lett. 112, 125001 (2014)

    Article  Google Scholar 

  54. A. Cianchi, D. Alesini, A. Bacci, M. Bellaveglia, R. Boni, M. Boscolo, M. Castellano, L. Catani, E. Chiadroni, S. Cialdi, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, L. Ficcadenti, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, L. Giannessi, C. Ligi, M. Mattioli, M. Migliorati, A. Mostacci, P. Musumeci, E. Pace, L. Palumbo, L. Pellegrino, M. Petrarca, M. Preger, M. Quattromini, R. Ricci, C. Ronsivalle, J. Rosenzweig, A.R. Rossi, C. Sanelli, L. Serafini, M. Serio, F. Sgamma, B. Spataro, F. Tazzioli, S. Tomassini, C. Vaccarezza, M. Vescovi, C. Vicario, High brightness electron beam emittance evolution measurements in an rf photoinjector. Phys. Rev. ST Accel. Beams 11, 032801 (2008)

    Article  Google Scholar 

  55. C.P. Hauri, R. Ganter, F. Le Pimpec, A. Trisorio, C. Ruchert, H.H. Braun, Intrinsic emittance reduction of an electron Beam from metal photocathodes. Phys. Rev. Lett. 104, 234802 (2010)

    Article  Google Scholar 

  56. G. Lambert, M. Bougeard, W. Boutu, B. Carre, D. Garzella, et al., Seeding the FEL of the SCSS prototype accelerator with harmonics of a Ti:Sa laser produced in gas, in Proceedings of FEL 2006 pp. 138–141 (2006), bESSY, Berlin, Germany, MOPPH046.

  57. A. Trisorio, P.M. Paul, F. Ple, C. Ruchert, C. Vicario, C.P. Hauri, Ultrabroadband TW-class Ti:sapphire laser system with adjustable central wavelength, bandwidth and multi-color operation. Opt. Express 19, 20 128–20 140 (2011)

    Article  Google Scholar 

  58. F.B. Grigsby, P. Dong, M.C. Downer, Chirped-pulse Raman amplification for two-color, high-intensity laser experiments. J. Opt. Soc. Am. B 25, 346–350 (2008)

    Article  ADS  Google Scholar 

  59. T.-W. Yau, C.-H. Lee, J. Wang, Femtosecond self-focusing dynamics measured by three-dimensional phase-retrieval cross correlation. J. Opt. Soc. Am. B 17, 1626–1635 (2000)

    Article  ADS  Google Scholar 

  60. J. Peatross, S. Voronov, I. Prokopovich, Selective zoning of high harmonic emission using counter-propagating light. Opt. Express 1, 114–125 (1997)

    Article  ADS  Google Scholar 

  61. G. Cheriaux, B. Walker, L.F. Dimauro, P. Rousseau, F. Salin, J.P. Chambaret, Aberration-free stretcher design for ultrashort-pulse amplification. Opt. Lett. 21, 414–416 (1996)

    Article  ADS  Google Scholar 

  62. J. Itatani, J. Faure, M. Nantel, G. Mourou, S. Watanabe, Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection. Opt. Comm. 148, 70–74 (1998)

    Article  ADS  Google Scholar 

  63. M. Nantel, J. Itatani, A.-C. Tien, J. Faure, D. Kaplan, M. Bouvier, T. Buma, P.V. Rompay, J. Nees, P.P. Pronko, D. Umstadter, G. Mourou, Temporal contrast in Ti:sapphire lasers: characterization and control. IEEE J. Sel. Top. Quant. Electron. 4, 449–458 (1998)

    Article  Google Scholar 

  64. K.-H. Hong, B. Hou, J.A. Nees, E. Power, G.A. Mourou, Generation and measurement of >108 intensity contrast ratio in a relativistic kHz chirped-pulse amplified laser. Appl. Phys. B 81, 447–457 (2005)

    Article  ADS  Google Scholar 

  65. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, H. Sasao, M. Tanoue, S. Kanazawa, D. Wakai, F. Sasao, H. Okada, I. Daito, M. Suzuki, S. Kondo, K. Kondo, A. Sugiyama, P.R. Bolton, A. Yokoyama, H. Daido, S. Kawanishi, T. Kimura, T. Tajima, High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system. Opt. Lett. 35, 1497–1499 (2010)

    Article  ADS  Google Scholar 

  66. J.H. Sung, S.K. Lee, T.M. Jeong, C.H. Nam, Enhancement of temporal contrast of high-power femtosecond laser pulses using two saturable absorbers in the picosecond regime. Appl. Phys. B 116, 287–292 (2014)

    Article  ADS  Google Scholar 

  67. A. Yogo, K. Kondo, M. Mori, H. Kiriyama, K. Ogura, T. Shimomura, N. Inoue, Y. Fukuda, H. Sakaki, S. Jinno, M. Kanasaki, P.R. Bolton, Insertable pulse cleaning module with a saturable absorber pair and a compensating amplifier for high-intensity ultrashort-pulse lasers. Opt. Express 22, 2060–2069 (2014)

    Article  ADS  Google Scholar 

  68. Y.-C. Ho, T.-S. Hung, C.-P. Yen, S.-Y. Chen, H.-H. Chu, J.-Y. Lin, J. Wang, M.-C. Chou, Enhancement of injection and acceleration of electrons in a laser wakefield accelerator by using an argon-doped hydrogen gas jet and optically preformed plasma waveguide. Phys. Plasmas 18, 063102 (2011)

    Article  ADS  Google Scholar 

  69. B. Chen, Y.-C. Ho, T.-S. Hung, Y.-L. Chang, M.-C. Chou, S.-Y. Chen, H.-H. Chu, S.-L. Huang, P.-H. Lin, J. Wang, J.-Y. Lin, High-brightness optical-field-ionization collisional-excitation extreme-ultraviolet lasing pumped by a 100-TW laser system in an optically preformed plasma waveguide. Appl. Phys. B 106, 817–822 (2012)

    Article  ADS  Google Scholar 

  70. T.-S. Hung, Y.-C. Ho, Y.-L. Chang, S.-J. Wong, H.-H. Chu, J.-Y. Lin, J. Wang, S.-Y. Chen, Programmably structured plasma waveguide for development of table-top photon and particle sources. Phys. Plasmas 19, 063109 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsu-hsin Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, TS., Yang, CH., Wang, J. et al. A 110-TW multiple-beam laser system with a 5-TW wavelength-tunable auxiliary beam for versatile control of laser-plasma interaction. Appl. Phys. B 117, 1189–1200 (2014). https://doi.org/10.1007/s00340-014-5943-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5943-6

Keywords

Navigation