Skip to main content
Log in

Phase recovery by using optical fiber dispersion and pulse pre-stretching

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this work, the applicability of a recently proposed phase recovery technique is extended, by using temporal pulse pre-stretching. As a proof of concept, the light pulses emitted by a two-stage laser system consisting of a sub-picosecond passively mode-locked fiber laser followed by an erbium-doped fiber amplifier were experimentally analyzed. These results were successfully compared with two indirect phase recovery techniques, both based on the Gerchberg–Saxton recursive algorithm and with the intensity autocorrelation when sub-picosecond light pulses were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.E. Gureyev, A. Pogany, D.M. Paganin, S.W. Wilkins, Linear algorithms for phase retrieval in the Fresnel region. Opt. Commun. 231, 53–70 (2004)

    Article  ADS  Google Scholar 

  2. R.W. Gerchberg, W.O. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  3. J. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982)

    Article  ADS  Google Scholar 

  4. M.R. Teague, Deterministic phase retrieval: a Green function solution. J. Opt. Soc. Am. 73, 1434–1441 (1983)

    Article  ADS  Google Scholar 

  5. N. Streibl, Phase imaging by the transport equation of intensity. Opt. Commun. 49, 6–10 (1984)

    Article  ADS  Google Scholar 

  6. K. Ichikawa, A.W. Lohmann, M. Takeda, Phase retrieval based on the irradiance transport equation and the Fourier transport method: experiments. Appl. Opt. 27, 3433–3436 (1988)

    Article  ADS  Google Scholar 

  7. F. Li, Y. Park, J. Azaña, Complete temporal pulse characterization based on phase reconstruction using optical ultrafast differentiation (PROUD). Opt. Lett. 32, 3364–3366 (2007)

    Article  ADS  Google Scholar 

  8. M.H. Asghari, J. Azaña, Self-referenced temporal phase reconstruction from intensity measurements using causality arguments in linear optical filters. Opt. Lett. 37, 3582–3584 (2012)

    Article  ADS  Google Scholar 

  9. M.H. Asghari, B. Jalali, Stereopsis-inspired time-stretched amplified real-time spectrometer (STARS). IEEE Photonics J. 4, 1693–1701 (2012)

    Article  Google Scholar 

  10. C. Cuadrado-Laborde, A. Carrascosa, P. Pérez-Millán, A. Díez, J. Cruz, M. Andres, Phase recovery by using optical fiber dispersion. Opt. Lett. 39, 598–601 (2014)

    Article  Google Scholar 

  11. K. Goda, B. Jalali, Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics 7, 102–112 (2013)

    Article  ADS  Google Scholar 

  12. J.-H. Chung, A.M. Weiner, Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and power spectrum. IEEE J. Sel. Top. Quant. Electron. 7, 656–666 (2001)

    Article  Google Scholar 

  13. M.J. Bastiaans, K.B. Wolf, Phase reconstruction from intensity measurements in linear systems. J. Opt. Soc. Am. A 20, 1046–1049 (2003)

    Article  ADS  Google Scholar 

  14. C. Dorrer, Characterization of nonlinear phase shifts by use of the temporal transport-of-intensity equation. Opt. Lett. 30, 3237–3239 (2005)

    Article  ADS  Google Scholar 

  15. C. Dorrer, I. Kang, Complete temporal characterization of short optical pulses by simplified chronocyclic tomography. Opt. Lett. 28, 1481–1483 (2003)

    Article  ADS  Google Scholar 

  16. D.R. Solli, S. Gupta, B. Jalali, Optical phase recovery in the dispersive Fourier transform. Appl. Phys. Lett. 95, 231108 (2009)

    Article  ADS  Google Scholar 

  17. M. Muriel, J. Azaña, A. Carballar, Real-time Fourier transformer based on fiber gratings. Opt. Lett. 24, 1–3 (1999)

    Article  ADS  Google Scholar 

  18. F. Li, Y. Park, J. Azaña, Linear characterization of optical pulses with durations ranging from the picosecond to the nanosecond regime using ultrafast photonic differentiation. IEEE J. Lightwave Technol. 27, 4623–4633 (2009)

    Article  ADS  Google Scholar 

  19. I. Kang, C. Dorrer, Highly sensitive differential tomographic technique for real-time ultrashort pulse characterization. Opt. Lett. 30, 1545–1547 (2005)

    Article  ADS  Google Scholar 

  20. F. Li, Y. Park, J. Azaña, Linear characterization of optical pulses with durations ranging from the picosecond to the nanosecond regime using ultrafast photonic differentiation. J. Light. Technol. 27, 4623–4633 (2009)

    Article  ADS  Google Scholar 

  21. G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, CA, 2001)

    Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Ministerio de Economía y Competitividad (Ref. TEC2013-46643-C2-1-R) and the Generalitat Valenciana of Spain (Ref. PROMETEOII/2014/072 and GV/2012/121). C. Cuadrado-Laborde acknowledges the financial support from the Programa de Investigadores Invitados de la Universidad de Valencia (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cuadrado-Laborde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuadrado-Laborde, C., Brotons-Gisbert, M., Serafino, G. et al. Phase recovery by using optical fiber dispersion and pulse pre-stretching. Appl. Phys. B 117, 1173–1181 (2014). https://doi.org/10.1007/s00340-014-5941-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5941-8

Keywords

Navigation